
The Good, the Bad and the Ugly

Björn Beskow

bjorn.beskow@callistaenterprise.se
www.callistaenterprise.se

2 years with Java Persistence API

2 years with JPA, Slide 2
© Copyright 2008, Callista Enterprise AB

Agenda

• The Good

– Wow! Transparency!

• The Bad

– Not that transparent after all …

• The Ugly

– JPA Deployment model and JavaEE
integration …

• What’s next?

2 years with JPA, Slide 3
© Copyright 2008, Callista Enterprise AB

JPA 1.0 – Industry Standard Object Relational
Mapping framework

• Declarative Mapping
• Framework API
• Query Language
• Transaction support

2 years with JPA, Slide 4
© Copyright 2008, Callista Enterprise AB

JPA Key Concepts

2 years with JPA, Slide 5
© Copyright 2008, Callista Enterprise AB

Key Concepts: Entity

- Plain Old Java Object with persistent identity
- Declarative mapping between object and
database schema

-Queryable via Java Persistence Query
Language (JPQL)

- Managed at runtime via EntityManager

2 years with JPA, Slide 6
© Copyright 2008, Callista Enterprise AB

Key Concepts: Entity Manager

- API for managing entity lifecycle
- persisting, refreshing, merging and removing entities

- API for finding entities and create entity queries
- find, createQuery, createNamedQuery

2 years with JPA, Slide 7
© Copyright 2008, Callista Enterprise AB

Key Concept: Persistence Context

- Runtime context for an Entity Manager
- Contains a set of “managed” entities

- Lifecycle may be managed
- by application or
- by JavaEE container

- Lifetime may be
- Bound to Tx scope
- “Extended”

2 years with JPA, Slide 8
© Copyright 2008, Callista Enterprise AB

Application Managed Persistence Context

- The application manages the Entity Manager, i.e. is responsible for
- Creating and closing the Entity Manager (and its
related Persistence Context)

- Demarcate transactions
- Propagate the Entity Manager to all interested parties

- May relate the lifecycle of the Entity Manager to transaction
boundaries, or extend it across TX boundaries

- Typically used in a Java SE 5.0 environment

2 years with JPA, Slide 9
© Copyright 2008, Callista Enterprise AB

Container-Managed Persistence Context

- A JavaEE container manages the Entity Manager and its related
Persistence Context

- Comes in two flavors
1. Transaction-Scoped Persistence Context

- Automatically created when a transaction is started
- Automatically propagated to all components that
participate in that transaction

- Automatically closed at transaction demarcation
2. Extended Persistence Context

- Governed by the lifecycle of a Stateful Session Bean
- May span multiple transactions

2 years with JPA, Slide 10
© Copyright 2008, Callista Enterprise AB

State Model for JPA Entities

2 years with JPA, Slide 11
© Copyright 2008, Callista Enterprise AB

Key Concept: EntityManagerFactory

- Factory API for EntityManagers
- Configured at Bootstrap/Deployment time

2 years with JPA, Slide 12
© Copyright 2008, Callista Enterprise AB

Key Concept: PersistenceUnit

- Unit of Persistence Packaging and Deployment
- Configuration for an EntityManagerFactory
- Object Relational Mapping Info
- Annotation-based or DD based

- Maps into a single database

2 years with JPA, Slide 13
© Copyright 2008, Callista Enterprise AB

Example Entity

@Entity
public class Order implements Serializable {

@Id @GeneratedValue
private Long orderId;

private double price;

private Date estimatedDelivery;

…
}

2 years with JPA, Slide 14
© Copyright 2008, Callista Enterprise AB

Example EntityManager usage

@Stateless
public class OrderServicesBean
implements OrderServices {
@PersistenceContext(unitName = "OrderPU")
private EntityManager entityManager;
public void processOrder(long orderId) {

Order o = entityManager.find(orderId,
Order.class);

...
o.setPrice(calculatePrice(o.getCustomer());
e.setEstimatedDelivery(erp.delivery);
...
// No explicit call to save changes –
// happens automatically (eventually)

}
}

2 years with JPA, Slide 15
© Copyright 2008, Callista Enterprise AB

The Good: POJO based, transparent
persistence

3. The JPA provider keeps
the entities in

synch with the database

2. Non entity classes
uses the Entity Manager
to control persistency

1. Entities are unaware of their
Persistency – they are pure

POJO’s (Plain Old Java Objects)

2 years with JPA, Slide 16
© Copyright 2008, Callista Enterprise AB

No more Embedded CRUD SQL …

Connection con = datasource.getConnection();
PreparedStatement stmt = null;
try {

stmt = con.prepareStatement("UPDATE products SET price = ?");
stmt.setInt(1, 200);
stmt.executeUpdate();

} finally {
if (stmt != null) {

try {
stmt.close();

} catch (SQLException ex) {
logger.warn("Could not close statement", ex);

}
}
try {

con.close();
} catch (SQLException ex) {

logger.warn("Could not close connection", ex);
}

}

2 years with JPA, Slide 17
© Copyright 2008, Callista Enterprise AB

No more DAOs …

public interface CustomerDao {

public void createCustomer(CustomerDTO customer)

public CustomerDOT retrieveCustomer(String ssn)
throws UnknownCustomerException;

public CustomerDTO updateCustomer(CustomerDTO customer)
throws UnknownCustomerException;

public void deleteCustomer(String ssn)
throws UnknownCustomerException;

}

2 years with JPA, Slide 18
© Copyright 2008, Callista Enterprise AB

No more DTOs …

public class CustomerDTO {

private String ssn;
private String name;

public String getSSN() {
return ssn;

}
public void setSSN(String ssn) {

this.ssn = ssn;
}
public String getName() {

return name;
}
public void setName(String name) {

this.name = name;
}

}

2 years with JPA, Slide 19
© Copyright 2008, Callista Enterprise AB

Managing Relationships

• Expressed in Mapping Metadata as well

• Allows object graphs to be navigated – much more convenient
than explicit Joins!

2 years with JPA, Slide 20
© Copyright 2008, Callista Enterprise AB

Managing Relationships: Mapping

@Entity
public class Customer implements Serializable {
…
@OneToMany(mappedBy = "customer")
private List<Order> orders;
…

}

2 years with JPA, Slide 21
© Copyright 2008, Callista Enterprise AB

Managing Relationships: Mapping (contd)

@Entity
public class Order implements Serializable {
…
@ManyToOne
private Customer customer;

@OneToMany(mappedBy = "order",
fetch = FetchType.EAGER)

private List<OrderItem> orderItems;
…

}

2 years with JPA, Slide 22
© Copyright 2008, Callista Enterprise AB

Managing Relationships: Mapping (contd)

@Entity
public class OrderItem implements Serializable {
…
@ManyToOne
private Order order;
…

}

2 years with JPA, Slide 23
© Copyright 2008, Callista Enterprise AB

Relationships – Lazy and Eager loading

• Controlling when related entities are loaded

– Eager

Load related entities when
the “parent” entity is loaded

– Lazy

Load related entities if/when
they are navigated to

Loaded when its parent
Order is loaded

Only loaded when
navigated to

2 years with JPA, Slide 24
© Copyright 2008, Callista Enterprise AB

Example Lazy Loading scenario

Loading of Customer
delayed until first requested

2 years with JPA, Slide 25
© Copyright 2008, Callista Enterprise AB

Relationships – Lazy and Eager loading

Potential performance problem:
Too large SQL statements

Potential performance problem:
Too many small SQL statements

2 years with JPA, Slide 26
© Copyright 2008, Callista Enterprise AB

Static vs. Dynamic Lazy/Eager Loading

• Eager Loading is the default for OneToOne relations, whereas Lazy
Loading is the default for OneToMany and ManyToMany relations

• Can be statically overridden using annotation attributes or DD
metadata:

• JPQL Queries can be used to dynamically change Lazy into Eager
loading:
SELECT o FROM Order o JOIN FETCH o.customer WHERE ...

@Entity
public class Order implements Serializable {

…
@ManyToOne
private Customer customer;

@OneToMany(mappedBy = "order", fetch = FetchType.EAGER)
private List<OrderItem> orderItems;
…

}

2 years with JPA, Slide 27
© Copyright 2008, Callista Enterprise AB

Experiences from the trenches

• Excellent developer productivity!

– Order of magnitude more productive than JDBC

– Much shorter start-up time compared to previous, model-based
code generation approach

– Simpler, less error-prone development tools

– Portability across JPA vendors and DB vendors

• Adequate expressive power and flexibility of Mapping mechanism

– Handles most cases

• Performance equal to or better than previous JDBC-based
framework

– Need to fine-tune balance between Lazy versus Eager loading

2 years with JPA, Slide 28
© Copyright 2008, Callista Enterprise AB

The Bad – Not that transparent in reality …

• Lifecycle of Persistence Context governs detachment, which in turn
affects

– lazy loading

– updates and merges

• Not that simple to foresee and comprehend!

2 years with JPA, Slide 29
© Copyright 2008, Callista Enterprise AB

Lazy Loading and Detachment

• Lazy loaded relations are fetched transparently when needed, as
long as the entity is managed.

• When an entity has become detached, any lazy loaded relations
must not be accessed.

• A lazy load problem occurs when trying to retrieve a lazily loaded
related entity from a detached entity, i.e. when the persistence
context is already closed.

• Lazy load problems are highly elusive and difficult to guard
against!

– Experience from the trenches: >75% of reported JPA-related
defects due to Lazy Load problems

2 years with JPA, Slide 30
© Copyright 2008, Callista Enterprise AB

Typical Web Request-Response sequence

• Scenario: Web application +
Container Managed and Transaction-Scoped Persistence Context

2 years with JPA, Slide 31
© Copyright 2008, Callista Enterprise AB

Typical Web Request-Response sequence – Lazy
Loading

TX Boundary This will result in a
Lazy Load problem

2 years with JPA, Slide 32
© Copyright 2008, Callista Enterprise AB

Preparing for Detachment

• Since a Transaction-Scoped Persistence Context is automatically
closed at the transaction boundary, any entities that are passed
out of the transaction boundary must be prepared for detachment:

– All relations and/or attributes that is of interest to the
consumer of the entity must be already loaded.

• Can be achieved by accessing the relation programmatically (i.e.
calling the getter):

• Or by using a fetch join JPQL query

public Order getOrder(long orderId) {

Order o = entityManager.find(orderIt,
Order.class);

...
o.getCustomer();
return o;

}

2 years with JPA, Slide 33
© Copyright 2008, Callista Enterprise AB

Preparing for Detachment will most likely affect your
Service interface …

public interface OrderServices {

public Order getOrder();

public Order getOrderWithCustomer();

public Order getOrderWithOrderItems();

public Order getOrderWithCustomerAndOrderItems();

public Order getOrderWithOrderItemsAndArticles();

...

}

2 years with JPA, Slide 34
© Copyright 2008, Callista Enterprise AB

Detecting Lazy Load problems

• The JPA 1.0 specification does not clearly state how a lazy load
problem should be handled and signalled by the JPA
implementation

• Several different behavious have be observed between JPA
providers:

– No lazy problem occurs, because the JPA implementation
implements the lazy relationship eagerly

– No lazy problem occurs, because the JPA implementation
fetches the related entities from the database even though the
entity manager is closed

– A vendor-specific exception is thrown

2 years with JPA, Slide 35
© Copyright 2008, Callista Enterprise AB

Updating Entities in a Stateless Web setting

• Scenario: Web application +
Container Managed and Transaction-Scoped Persistence Context

2 years with JPA, Slide 36
© Copyright 2008, Callista Enterprise AB

Naive Approach: Merge “new” entity

HTTP Request/Response boundary

2 years with JPA, Slide 37
© Copyright 2008, Callista Enterprise AB

Naive Approach: Sample code

― Requires setting of all attributes
― Poorly documented behavior in spec
― You’re up for a nasty surprise!

Business Logic

Application Logic
(e.g. Web)

Order o = new Order();
o.setOrderNo(orderNo)
o.setVersion(version);
o.setEstimatedDelivery(delivery);
...
o = service.updateOrder(o);

public Order updateOrder(Order o) {
return em.merge(o);

}

Transactional
boundary

2 years with JPA, Slide 38
© Copyright 2008, Callista Enterprise AB

Remember the difference between New and
Detached Entities?

≠

2 years with JPA, Slide 39
© Copyright 2008, Callista Enterprise AB

A subtle difference between …

2 years with JPA, Slide 40
© Copyright 2008, Callista Enterprise AB

... and

2 years with JPA, Slide 41
© Copyright 2008, Callista Enterprise AB

Alternative #1: update and merge detached entity

HTTP Request/Response boundary

2 years with JPA, Slide 42
© Copyright 2008, Callista Enterprise AB

Alternative #1: Sample code

Requires explicit use of the HTTP Session
― HTTP Session must be correctly initialized from the previous

page
― The detached entity must be removed explicit from the HTTP

Session
― How large can a serialized detached entity become?

Business Logic

Application Logic
(e.g. Web)

Transactional
boundary

Order o = (Order)session
.getAttribute("Order");

o.setEstimatedDelivery(delivery);
o = service.updateOrder(o);

public Order updateOrder(Order o) {
return em.merge(o);

}

2 years with JPA, Slide 43
© Copyright 2008, Callista Enterprise AB

Alternative #2: Re-read and update

2 years with JPA, Slide 44
© Copyright 2008, Callista Enterprise AB

Alternative #2: Sample code

― Requires extra SQL SELECT round-trip

― Requires setting of all attributes in both application and
business logic

Business Logic

Application Logic
(e.g. Web)

Transactional
boundary

Order o = new Order();
o.setOrderNo(orderNo)
o.setEstimatedDelivery(delivery);
...
o = service.updateOrder(o);

public Order updateOrder(Order o) {
Order o = service.find(o.getOrderNo(),

Order.class);
o.setEstimatedDelivery(delivery);
return o;

}

2 years with JPA, Slide 45
© Copyright 2008, Callista Enterprise AB

The Ugly

• The rigid JPA Deployment and Packaging model prevents
testability

• Does not blend well with JavaEE Naming and separation of
concerns between Developer and Deployer

2 years with JPA, Slide 46
© Copyright 2008, Callista Enterprise AB

Persistence Archives and Persistence Units

• Unit of Persistence Packaging and Deployment

• Configuration for an EntityManagerFactory

• Object Relational Mapping Info

– Annotation-based or Deployment Descriptor based

• Persistence ARchive: JAR archive containing a persistence.xml file
placed in the META-INF folder

2 years with JPA, Slide 47
© Copyright 2008, Callista Enterprise AB

Persistence.xml and Pluggability

• The persistence.xml deployment descriptor specifies physical
information, which cannot easily be changed in different contexts
(e.g. in Unit Tests)

<persistence-unit name="OrderPU" transaction-type="JTA">
...
<jta-data-source>jdbc/Jee5TestDb</jta-data-source>
...
<properties>
...
<property name="hibernate.hbm2ddl.auto" value="update" />
...

</properties>
</persistence-unit>

<persistence-unit name="OrderPU" transaction-type="RESOURCE_LOCAL">
...
<properties>
...
<property name="hibernate.connection.driver_class"

value="org.apache.derby.jdbc.ClientDriver" />
<property name="hibernate.connection.url"

value="jdbc:derby://localhost:1527/Jee5TestDb_HB" />
<property name="hibernate.connection.username"

value="APP_HB" />
<property name="hibernate.connection.password" value="APP" />
<property name="hibernate.hbm2ddl.auto" value="update" />
...

</properties>
</persistence-unit>

2 years with JPA, Slide 48
© Copyright 2008, Callista Enterprise AB

Custom Framework Solutions

• Gap filled by additional frameworks

– Spring provides a custom JPA bootstrapping mechanism to
allow configuration of Persistence Units

• Current project solution:

– Specify multiple PersistenceUnits, choose which one to use
based on runtime configuration

<!-- In-container persistence unit -->
<persistence-unit name="OrderPU" transaction-type="JTA">

...
</persistence-unit>

<!-- Out-of-container Tests persistence unit -->
<persistence-unit name="OrderPU_TEST" transaction-type="RESOURCE_LOCAL">

...
</persistence-unit>

2 years with JPA, Slide 49
© Copyright 2008, Callista Enterprise AB

What does <jta-datasource> mean?

• JNDI lookup string for Datasource?

• It’s not specified!

<persistence-unit name="PosPU" transaction-type="JTA">
...
<jta-data-source>jdbc/PosDB</jta-data-source>
...

</persistence-unit>

2 years with JPA, Slide 50
© Copyright 2008, Callista Enterprise AB

Naming: JavaEE Component Scope

• JavaEE requires the app server to support a ”logical” naming tree
visible to components of the same enterprise application

– Logical names are referenced through a standardized virtual
sub-context: ”java:comp/env”

• The deployer maps the logical name to an external name visible to
all clients of the network

2 years with JPA, Slide 51
© Copyright 2008, Callista Enterprise AB

Hence we should use a logical name in
persistence.xml as well?

• But where should we place the resource ref?

– The JPA entities are not JavaEE Components, hence they have
no associated Component Scope

– No standardized Application Scope exists (even though some
App Server vendors allow configuration of resources in their
proprietary deployment descriptors)

• On one of the components that uses the Persistence Unit?

<persistence-unit name="PosPU" transaction-type="JTA">
...
<jta-data-source>java:comp/env/jdbc/PosDB</jta-data-source>
...

</persistence-unit>

2 years with JPA, Slide 52
© Copyright 2008, Callista Enterprise AB

Using the @Resource attribute

@Resource(name="jdbc/PosDB", mappedName="jdbc/PosDB_v1")
@Stateless
public class OrderServicesBean implements OrderServices {

private EntityManager em = null;

@PersistenceContext(unitName="PosPU")
public void setEntityManager(EntityManager em) {
this.em = em;

}
}

2 years with JPA, Slide 53
© Copyright 2008, Callista Enterprise AB

But what if ... ?

@Resource(name="jdbc/PosDB", mappedName="jdbc/PosDB_v2")
@Stateless
public class CustomerServicesBean
implements CustomerServices {

private EntityManager em = null;

@PersistenceContext(unitName="PosPU")
public void setEntityManager(EntityManager em) {
this.em = em;

}
}

2 years with JPA, Slide 54
© Copyright 2008, Callista Enterprise AB

And besides, it doesn’t work

• Currently no portable way exist to use a logical JNDI name in
Persistence.xml

• Requires build-time manipulation of EAR and EJB-JAR files to
provide physical details

2 years with JPA, Slide 55
© Copyright 2008, Callista Enterprise AB

To conclude

• JPA´s Transparent Persistency is a giant step forward

– Powerful

– Good productivity

• But as (probably) any abstraction, JPA tends to leak

– Understanding the Persistence Context is critical

– May rapidly affect the productivity equation

• Still immature in some aspects

– Issues with configuration pluggability (e.g. for testing)

– Issues with JavaEE integration

• Looking ahead …

2 years with JPA, Slide 56
© Copyright 2008, Callista Enterprise AB

JPA 2.0

• JSR 317 Expert Group formed in mid 2007 under the lead of
Linda DeMichiel

• First Public Review scheduled for Q2 2008

• Final Release scheduled for Q4 2008, with Reference
Implementation late Q2 2009

2 years with JPA, Slide 57
© Copyright 2008, Callista Enterprise AB

JPA 2.0 Scope

• Expanded object/relational mapping functionality

• Additions to the Java Persistence query language

– An API for "criteria" queries

• Standardization of sets of "hints" for query configuration and for

entity manager configuration

• Standardization of additional metadata to support DDL generation

• Expanded pluggability contracts to support efficient passivation and

replication of extended persistence contexts in Java EE environments

• Standardization of additional contracts for entity detachment and

merge, and persistence context management

• Better support for validation

2 years with JPA, Slide 58
© Copyright 2008, Callista Enterprise AB

Time (?) for Questions!

	The Good, the Bad and the Ugly
	Agenda
	JPA 1.0 – Industry Standard Object Relational Mapping framework
	JPA Key Concepts
	Key Concepts: Entity
	Key Concepts: Entity Manager
	Key Concept: Persistence Context
	Application Managed Persistence Context
	Container-Managed Persistence Context
	State Model for JPA Entities
	Key Concept: EntityManagerFactory
	Key Concept: PersistenceUnit
	Example Entity
	Example EntityManager usage
	The Good: POJO based, transparent�persistence
	No more Embedded CRUD SQL …
	No more DAOs …
	No more DTOs …
	Managing Relationships
	Managing Relationships: Mapping
	Managing Relationships: Mapping (contd)
	Managing Relationships: Mapping (contd)
	Relationships – Lazy and Eager loading
	Example Lazy Loading scenario
	Relationships – Lazy and Eager loading
	Static vs. Dynamic Lazy/Eager Loading
	Experiences from the trenches
	The Bad – Not that transparent in reality …
	Lazy Loading and Detachment
	Typical Web Request-Response sequence
	Typical Web Request-Response sequence – Lazy Loading
	Preparing for Detachment
	Preparing for Detachment will most likely affect your Service interface …
	Detecting Lazy Load problems
	Updating Entities in a Stateless Web setting
	Naive Approach: Merge “new” entity
	Naive Approach: Sample code
	Remember the difference between New and Detached Entities?
	A subtle difference between …
	... and
	Alternative #1: update and merge detached entity
	Alternative #1: Sample code
	Alternative #2: Re-read and update
	Alternative #2: Sample code
	The Ugly
	Persistence Archives and Persistence Units
	Persistence.xml and Pluggability
	Custom Framework Solutions
	 What does <jta-datasource> mean?
	Naming: JavaEE Component Scope
	Hence we should use a logical name in persistence.xml as well?
	Using the @Resource attribute
	But what if ... ?
	And besides, it doesn’t work
	To conclude
	JPA 2.0
	JPA 2.0 Scope
	Time (?) for Questions!

