
CADEC 2019.01.24 & 2019.01.30 | CALLISTAENTERPRISE.SE

SERVICE MESH

MAGNUS LARSSON

AGENDA

• Problem definition

• Previous solutions

• Service Mesh
- Architecture
- Capabilities
- Products

• DEMO, DEMO, DEMO

• Summary

PROBLEM DEFINITION

WHERE ARE THE SERVICES?
WHICH SERVICE TO CALL?

DISCOVERY SERVER

WHERE ARE THE LOGS?
HOW TO CORRELATE LOGS
FROM DIFFERENT SERVICES?

LOG ANALYSIS

WHERE IS MY CONFIGURATION?
ARE ALL SERVICES
CONFIGURATION UP TO DATE?

CENTRALIZED CONFIGURATION

WHO IS CALLING WHO?
DISTRIBUTED TRACING

WHAT HARDWARE RESOURCES ARE USED?
MONITORING

HOW TO
• DEPLOY SERVICES?
• SCALE SERVICES?
• UPGRADE SERVICES?
• RESTART FAILING SERVICES?

SERVICE MANAGEMENT

HOW ARE MY SERVICES PERFORMING?
OBSERVABILITY

HOW TO HIDE PRIVATE SERVICES?
HOW TO PROTECT PUBLIC SERVICES?

EDGE SERVER

HOW TO CONTROL ROUTING?
• RATE LIMITING
• CANARY & BLUE/GREEN UPGRADES

TRAFFIC MANAGMENT

HOW TO HANDLE FAULTS?
• SLOW OR NO RESPONSE
• TEMPORARY FAULTS
• OVERLOAD

RESILIENCE

?

PREVIOUS SOLUTIONS: SPRING CLOUD/NETFLIX OSS

1. Discovery server

2. Edge server

3. Centralized
configuration

4. Distributed
tracing

5. Resilience Products Recommendations

Discovery
Service

(Netflix Eureka)

Circuit Breaker
Dashboard

(Netflix Turbine +
Hystrix Dashboard)

OAuth
Authorization

Server
(spring-security)

Load Balancer
OAuth token relay

Config Server
(spring-cloud-config)

Edge server
(Netflix Zuul)

Product
Composite

Reviews

Event Bus
(RabbitMQ)

Distr. Tracing
(spring-cloud-sleuth

+ Zipkin)

Circuit Breaker

Circuit Breaker

OAuth/OIDC
Resource

Load Balancer

C
on

fi
g

C
lie

nt

D
is

co
ve

ry
 C

lie
nt

Client

PREVIOUS SOLUTIONS: SPRING CLOUD/NETFLIX OSS

1. Discovery server

2. Edge server

3. Centralized
configuration

4. Distributed
tracing

5. Resilience Products Recommendations

Discovery
Service

(Netflix Eureka)

Circuit Breaker
Dashboard

(Netflix Turbine +
Hystrix Dashboard)

OAuth
Authorization

Server
(spring-security)

Load Balancer
OAuth token relay

Config Server
(spring-cloud-config)

Edge server
(Netflix Zuul)

Product
Composite

Reviews

Event Bus
(RabbitMQ)

Distr. Tracing
(spring-cloud-sleuth

+ Zipkin)

Circuit Breaker

Circuit Breaker

OAuth/OIDC
Resource

Load Balancer

C
on

fi
g

C
lie

nt

D
is

co
ve

ry
 C

lie
nt

• Only for Spring based microservices
- What about Micronaut, Java EE MicroProfile or Vert.x?

• Only for the Java VM
- Other languages?

• Alternatives with same functionality?
- But without the drawbacks…

Client

SERVICE MESH - ARCHITECTURE

• Data Plane injected at Run Time
- Data Plane acts as a Proxy
- Runs as a “sidecar”
• Ingress and Egress acts a external proxies
• Operators declares a desired state

to the Control Plan
• Control Plane send commands

to the Data Plan
• Data Plan reports metrics

to the Control Plane
• No affect on development
- Trace Ids still need to be managed

• Polyglot

Service Mesh Control Plane

Data Plane
Data Plane

Data Plane

Data Plane
Data Plane

Data PlaneIngress Egress

SERVICE MESH - CAPABILITIES

•Traffic Management
• Resilience
• Edge Server
•Observability
•Distributed Tracing
•Monitoring

SERVICE MESH - PRODUCTS

- Concerns
» Heavyweight sidecar…
» Upfront complex configuration

• Linkerd 2
- Launched in September 2018
- Written in Rust
- Targeting Kubernetes, highly opinionated

» Zero Configration

• Linkerd
- Developed by Buoyant
- Open Source
- Written in Scala
- Launched in February 2016

» Based on Twitter Finagle, from 2011
- Reached one hundred billion production requests in March 2017
- Also see: How ForeSee processes billions of events with Linkerd per day, Aug 2017

https://blog.buoyant.io/2017/03/07/linkerd-one-hundred-billion-production-requests/
https://www.youtube.com/watch?v=YRjUuhiXIPc

SERVICE MESH - PRODUCTS

• Istio
- Developed by Google, IBM and Lyft
- Open Source
- Written in Go
- Data plane based on Lyft’s Envoy proxy

» Written in C++
- Launched in May 2017
- Production ready since July 2018

- The most functionally rich Service Mesh product as of today

- Will be used in the DEMO!

• AWS App Mesh
- Proprietary
- Launched at re:Invent in November 2018
- Based on Envoy proxy
- Public Preview today

ISTIO – HIGH LEVEL ARCHITECTURE

Istio Control Plane

Envoy Proxy

Data Plane

Envoy Proxy

Data Plane
Data Plane

Envoy Proxy

Istio components… Kiali

Prometheus Grafana Jaeger

Ingress
Gateway

Egress
Gateway

WHEN IS A SERVICE MESH APPLICABLE?

• Synchronous vs asynchronous communication
- Istio operates on TCP level, so actually doesn’t care…

• Macro-, mini- or micro-services?
- Or a mix…
- A service mesh is agnostic to size, but was born in the land of microservices

• In cloud or on premises?
- A service mesh does not care

• With or without containers?
- Works without containers, but complex setup and configuration
- Most used with a container orchestrator, e.g. Kubernetes

CAPABILITY MAPPING

HOW TO HANDLE FAULTS?
• SLOW OR NO RESPONSE
• TEMPORARY FAULTS
• OVERLOAD

WHERE ARE THE SERVICES?
WHICH SERVICE TO CALL?

WHERE ARE THE LOGS?

HOW TO HIDE PRIVATE SERVICES?
HOW TO PROTECT PUBLIC SERVICES?

HOW TO
• DEPLOY SERVICES?
• SCALE SERVICES?
• UPGRADE SERVICES?
• RESTART FAILING SERVICES?

WHERE IS MY CONFIGURATION?
ARE ALL SERVICES
CONFIGURATION UP TO DATE?

RESILIENCEDISCOVERY SERVER

HOW TO CORRELATE LOGS
FROM DIFFERENT SERVICES?

LOG ANALYSIS

CENTRALIZED CONFIGURATION

WHAT HARDWARE RESOURCES ARE USED?

WHO IS CALLING WHO?
DISTRIBUTED TRACING

MONITORING

SERVICE MANAGEMENT
OBSERVABILITY
HOW ARE MY SERVICES PERFORMING?

EDGE SERVER

Composite

Products Reviews Recommendations

SPRING CLOUD/NETFLIX

ISTIO

KUBERNETES

EFK

HOW TO CONTROL ROUTING?
• RATE LIMITING
• CANARY & BLUE/GREEN UPGRADES

TRAFFIC MANAGMENT

DEMO, DEMO, DEMO

1. Observability
• Kiali, Grafana and Jaeger

2. Resilience
• Fault injection and retries

3. Rolling Upgrades
• Canary
• Blue/Green

DEMO LANDSCAPE
• Use Minikube
• Istio Control plane installed
• Istio Ingress Gateway configured
• V1 services deployed
- Plain Spring Boot
- No data storage
- Istio Data plane injected

Products Recommendations

Composite

Reviews

Ingress

Client

DEMO LANDSCAPE

Products RecommendationsReviews

V2 - Go V2 – C# V2 – Node.js

• Prepared V2 services
- Not Deployed!
- No changes in API (nor in the databases)

log.Printf("GET /product v2 (Go), productId: %v\n", id)

console.log("GET /recommendation v2 (Node), productId: " + productId)

Console.WriteLine(DateTime.Now.ToString("o") + " GET /review v2 (C#), productId: " + productId);

• Log statements
- Product – Go

- Recommendation – Node.js

- Review – .Net Core C#

DEMO, DEMO, DEMO

1. Observability
• Kiali, Grafana and Jaeger

2. Resilience
• Fault injection and retries

3. Rolling Upgrades
• Canary
• Blue/Green

Products Recommendations

Composite

Reviews

Ingress

curl

SUMMARY - SERVICE MESH
1. Next generation management tools for distributed systems, e.g. microservices
- Traffic Management
- Resilience
- Edge Server
- Observability

2. Works for
- Synch and Asynch communication
- Macro, Mini & Micro-services
- In Cloud & On Premises
- Polyglot, any language

3. Only affects runtime
4. Container environment (e.g. Kubernetes) preferred
- Reduced complexity for installation and configuration

