
Shortcut or longcut towards JVM Based micro-services
CADEC 2021 Peter Larsson

1

mailto:peter.larsson@callistaenterprise.se

1. Large memory footprint
2. Long startup time
3. Initial warmup required (JIT)

Makes it expensive for large systems and impossible to scale to
zero.

2

Increase application throughput and reduced latency
Compile applications into small self-contained native binaries
Seamlessly use multiple languages and libraries

3

Community Edition (GPL with classpath exception)
Enterprise Edition (Commercial, Oracle Supported)

4

Supported
Unsafe Memory Access
References
Threads
Signal Handlers

Requires Con�guration
Re�ections, Dynamic Class Loading
Dynamic Proxies (JDK)
Resource Access
Java Native Interface (JNI)

Unsupported
CGLIB, Invoke Dynamic and Method Handles, Finalizers, Security Manager, JVMTI

5

Understand build-time vs. run-time (default) class initialization
Frameworks/libs without native support
Use and maintain con�gurations for Re�ection, Proxies, Resources and
JNI

Static con�g or dynamic as code

6

public class StaticDemo {
 static final LocalDateTime NOW = LocalDateTime.now();
 static {
 log("Class Initialization");
 }
 public static void main(String[] args) {
 log("now: " + NOW);
 }
 static void log(String msg) {
 System.out.println("[-->] " + msg);
 }
}

$ java -cp staticdemo.jar StaticDemo
[-->] Class Initialization
[-->] now: 2020-12-29T14:41:17.569383

7

Spring team collaborates with GraalVM and also 3rd party library
projects (Tomcat, Netty, ...)
No need for CGLIB proxies
@SpringBootApplication(proxyBeanMethods = false)
@Configuration(proxyBeanMethods = false)

spring-graal-native project
Provides a GraalVM @AutomaticFeature
Con�gures GraalVM Native (dynamic inspection of app and deps)

8

Spring Boot: WebFlux, R2DBC, Reactor Kafka
Go: Fiber, sqlx, Sarama

9

GraalVM 20.3
1. Upgrade to Spring Boot 2.4
2. Add GraalVM native support. Substrate VM (svm)
3. Add Spring native support (spring-graalvm-native)
4. Create build script or use maven plugin (build.sh)
5. Declare all Re�ections (for DTO beans) and resources

Manually or use native-image-agent to generate
6. Compile, run and �x remaining stu� (trial and error)

Re�ection con�g for Kafka and JSON serializers
Resource con�g for Kafka
Substitute Kafka class using Method Handles

10

Unable to compile static executable and build from a scratch docker-
image

Both Go and GraalVM native executables depends on shared C/C++ libraries
Googles gcr.io/distroless/base is used instead

Even minor changes breaks the build
Spring Boot 2.4.0-RC1 to 2.4.0 release update
Graal 20.2 to 20.3 minor update
Use of new features from existing 3rd party libraries
Adding 3rd party libraries

Discrepancy between dev and runtime environments
What's the credibility of unit tests

11

12

13

App Memory
S/E [MB]

TPS Mean Resp
[ms]

Max Resp
[ms]

Con. Size
[MB]

Startup
[ms]

JVM 322/551 1797 74 4048 444 5527

Native 49/643 1628 185 1242 175 150

Go 3/107 1920 6 77 31 10

2000 clients reports approx. one msg per second for 5 minutes
(cold start, ephemeral micro-service)

14

JVM performs better than Native (throughput and latency)
Signi�cantly better performance for warm JVM compared to Native

Higher memory consumption for Native compared to JVM (mx256m)
Go is a magnitude better on almost everything

15

Increase application throughput and reduced latency
Compile applications into small self-contained native binaries

16

A lot of e�ort is put into GraalVM Native, and it should be on your tech
radar
If startup-time is crucial and for green�eld JVM micro-services GraalVM
Native might be of interest

Long startup times can also be mitigated in the execution platform
Though, a more appropriate language such as Go de�nitely is an option

GraalVM Native is of no interest for legacy JVM services without
framework support

17

"There's no Holy Graal, just loads of hard work and
Java."

- Me

18

