GraalVM Native Image

Shortcut or longcut towards JVM Based micro-services

CADEC 2021 Peter Larsson

mailto:peter.larsson@callistaenterprise.se

JVM based Micro Services

1. Large memory footprint
2. Long startup time
3. Initial warmup required (JIT)

Makes it expensive for large systems and impossible to scale to
zero.

GraalVM to the Rescue?
Run Programs Faster Anywhere”

I

e |Increase application throughput and reduced latency
e Compile applications into small self-contained native binaries
e Seamlessly use multiple languages and libraries

GraalVMM Provides 2 Editions

e Community Edition (GPL with classpath exception)
e Enterprise Edition (Commercial, Oracle Supported)

Native Considerations..
Supported

= Unsafe Memory Access = Reflections, Dynamic Class Loading
= References = Dynamic Proxies (JDK)

= Threads m Resource Access

= Signal Handlers = Java Native Interface (JNI)

Unsupported
= CGLIB, Invoke Dynamic and Method Handles, Finalizers, Security Manager, JVMTI

Considerations contd

Understand build-time vs. run-time (default) class initialization
-rameworks/libs without native support

Jse and maintain configurations for Reflection, Proxies, Resources and
JNI

m Static config or dynamic as code

Build Time Class Initialization

StaticDemo {
LocalDateTime NOW = LocalDateTime.now();

{

log("Class Initialization");

main ([1 args) {
log("now: " + NOW);

log(msg) {
System.out.println("[-->]

+ msqg);

$ java -cp staticdemo.jar StaticDemo
[-->] Class Initialization
[-—>] now: 2020-12-29T14:41:17.569383

Build Native Image (5x speed)

[13:16] java git: ()
[staticdemo:24601]

native-image
923.35

—-initialize-at-build-time=StaticDemo -cp staticdemo.jar St:

classlist: ms, 0.96 GB

Initialization

[-->] Class

[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:
[staticdemo:

24601
24601]
24601
24601
24601]
24601
24601]
24601
24601
24601]
24601
24601]
24601]
24601]
24601

(cap):
setup:
(clinit):
(typeflow):
(objects):
(features):
analysis:
universe:
(parse):
(inline):
(compile):
compile:
image:
write:
[total]:

2,822.
3,945.

99.
.55

3,516

3,852.
.29
.46
.49
626 .
1,124.
4,555.
6,718.
941.
329.
21,073.

132
7,734
304

59
712
64

92

88
07
38
76
70
61
65

ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,
ms,

0
0
1
1
1
1
1
1
1
1
2
2
2
2
2

.96
.96
.19
)
.19
.19
5 dLS)
.21
.21
.66
.25
.25
.25
.25
.25

GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB

[13:16]
[-=>] now:
[13:17]
[-=>] now:
[13:17]
[-->] now:
[13:17]

java git: () ./staticdemo
2020-12-30T13:16:38.339338

java git: () ./staticdemo
2020-12-30T13:16:38.339338

java git: () ./staticdemo
2020-12-30T13:16:38.339338

java git: ()

Spring Boot and GraalVM Native

e Spring team collaborates with GraalVM and also 3rd party library
projects (Tomcat, Netty, ...)
e No need for CGLIB proxies

® spring-graal-native project
= Provides a GraalVM
= Configures GraalVM Native (dynamic inspection of app and deps)

FleetDemo App (Spring Boot and Go)

<<client>> <<client>>
Vehicle Plotter
REST SSE
put status receive status
v v
publish
get info enriched msg subscribe
v v
<<service>> <<service>>
MySQL Kafka

Spring Boot: WebFlux, R2DBC, Reactor Kafka
Go: Fiber, sqglx, Sarama

1.
. Add GraalVM native support. Substrate VM (svm)
. Add Spring native support (

. Create build script or use maven plugin (build.sh)
. Declare all Reflections (for DTO beans) and resources

U &~ W N

o

Road to Enable Native

GraalVM 20.3
Upgrade to Spring Boot 2.4

e Manually or use to generate

. Compile, run and fix remaining stuff (trial and error)

e Reflection config for Kafka and JSON serializers
e Resource config for Kafka
e Substitute Kafka class using Method Handles

Build Native Image (20x speed)

[spring-boot-fleetdemo:170] (compile): 139,426.57 ms, 7.49 GB
[spring-boot-fleetdemo:170] compile: 246,506.86 ms, 7.32 GB
[spring-boot-fleetdemo:170] image: 29,772.94 ms, 6.99 GB
[spring-boot-fleetdemo:170] write: 5,290.80 ms, 6.99 GB
[spring-boot-fleetdemo:170] [total]: 687,593.47 ms, 6.99 GB

Removing intermediate container 6dab66a2025e
-——> 6565c9578698
Step 5/9 : FROM gcr.io/distroless/base
-—=> 972b93457774
Step 6/9 : WORKDIR /app
—--=> Using cache
-—=> 49387£71d300
Step 7/9 : EXPOSE 8080
---> Using cache
-—-> fd3£f63f458e8
Step 8/9 : COPY --from=builder /build/target/native-image/spring-boot-fleetdemo
-—-> 12d4601346b9
Step 9/9 : CMD ["./spring-boot-fleetdemo"]
——-> Running in 8ab3cd239023
Removing intermediate container 8ab3cd239023
---> elObadb575be
Successfully built elObadb575be
Successfully tagged refapp-native:latest
735.10 real 0.40 user 0.43 sys
[PlGsGi78] refapp-spring-boot git: (master) X

Develop and Build Findings

Unable to compile static executable and build from a scratch docker-
image

= Both Go and GraalVM native executables depends on shared C/C++ libraries

m Googles gcr.io/distroless/base is used instead

Even minor changes breaks the build

= Spring Boot 2.4.0-RC1 to 2.4.0 release update

= Graal 20.2 to 20.3 minor update

= Use of new features from existing 3rd party libraries
= Adding 3rd party libraries

Discrepancy between dev and runtime environments
What's the credibility of unit tests

Demo

Load Test 2K reg/s during 5 minutes

OpenJDK 11 GraalVM Native 20.3

Response Time Percentiles over Time (OK)

Zoom|1m| | | | zoom(im| | | |

g £
3 4k 2k » 3 1000 | 2k
E \ = E
=) =
2 - g
§ 2k 1k 2 § 500 . 1k
w w

ok J — A | 0k 0 ‘ A ok

I I

% Js T 1005 Ton. sodo. Lo 1adn s - ys T 5 R T
193900 | 193830 5 19390 197320 W0 Om o33 Ol oon'* W% Y WAL — Relilsers VR0 3B s 00 s o % W30

GO1.14

Zoom(tm| | [|
0
Ul
: 100 2 >
- <
3 / :
£ 50 I 1k ©
» @
U
(-4
S ok

-I. .I.\i .I. .I. .I. V.I. -I. .I. .I. ’.7I.
DU AP 20 ALY o e OB WY YN AR AR

I I
5% O 0% Ml max” T P Active Uger’

S13S() ANDY

L oad Test Metrics

App Memory TPS Mean Resp Max Resp Con. Size Startup
S/E [MB] [ms] [ms] [MB] [ms]

JVM 322/551 1797 74 4048 444 5527

Native 49/643 1628 185 1242 175 150

Go 3/107 1920 6 77 31 10

2000 clients reports approx. one msg per second for 5 minutes

(cold start, ephemeral micro-service)

Runtime Findings

e VM performs better than Native (throughput and latency)
= Significantly better performance for warm JVM compared to Native

e Higher memory consumption for Native compared to JVM (mx256m)
* GO is a magnitude better on almost everything

GraalvVM to the Rescuel

* |ncrease application throughput and reduced latency
e Compile applications into small self-contained native binaries

Recommendation

e Alot of effort is put into GraalVM Native, and it should be on your tech
radar

e |f startup-time is crucial and for greenfield JVM micro-services GraalVM

Native might be of interest

m | ong startup times can also be mitigated in the execution platform
= Though, a more appropriate language such as Go definitely is an option

e GraalVM Native is of no interest for legacy JVM services without
framework support

Dear fellow JVM'ers!

"There's no Holy Graal, just loads of hard work and
Java."”

