
CADEC 2024.01.18 & 2024.01.24 | CALLISTAENTERPRISE.SE

DESIGNING FOR HIGH AVAILABILITY
IN A DISTRIBUTED ARCHITECTURE

JOHAN ZETTERSTRÖM

BASED ON A TRUE STORY…

ON THE AGENDA:

1 : THE HIGH-AVAILABILITY
ARCHITECTURE

3: THE NEW SYSTEM2: THE EXISTING SYSTEM

THE HIGH-AVAILABILITY ARCHITECTURE

HIGH AVAILABILITY IN A DISTRIBUTED ARCHITECTURE

• Increase time autonomy

HIGH AVAILABILITY IN A DISTRIBUTED ARCHITECTURE

• Increase time autonomy
- Keep data close (cache, read-only)

HIGH AVAILABILITY IN A DISTRIBUTED ARCHITECTURE

• Increase time autonomy
- Keep data close (cache, read-only)
- Pub/sub for receiving updates from master

HIGH AVAILABILITY IN A DISTRIBUTED ARCHITECTURE

• Increase time autonomy
- Keep data close (cache, read-only)
- Pub/sub for receiving updates from master
- Asynchronous flow for updates to master

HIGH AVAILABILITY IN A DISTRIBUTED ARCHITECTURE

• For services that provide functionality, accept tighter coupling
(no time autonomy) or duplicate logic

• Use resilience mechanisms
- Time limiter

- Retry

- Circuit breaker

THE EXISTING SYSTEM

THE EXISTING SYSTEM

• Client-server
• Dependent on a couple of services

(no resilience mechanisms used)
• Offline mode (client cuts connection

to server)
- limited functionality
- synch problems

THE OLD SYSTEM - MAIN PROBLEMS

• Old and hard to maintain
• In need of some further development

THE NEW SYSTEM

GOALS FOR THE NEW SYSTEM

• Maintain a high availability
• Integrate with more of the available services
• Modularize & offer new services to other systems
• Simplify maintenance

THE NEW SYSTEM

• New functionality, a rules engine,
might be of interest to other systems

• A separate system to its other
stakeholders

• A subsystem to us
• On what terms do we access the

subsystem?
- same as system-external services?
- same as system-internal services?

THE NEW SYSTEM

• New functionality, a rules engine,
might be of interest to other systems

• A separate system to it’s other
stakeholders

• A subsystem to us
• On what terms do we access the

subsystem?
- same as system-external services?
- same as system-internal services?

THE NEW SYSTEM

• Decision:
- Subsystem can be accessed on the

same conditions as components in
the main system

- A logical system boundary is
defined, which gives us a context
for defining conditions for the
components inside the boundary

ANALYSING EXTERNAL DEPENDENCIES

• Three parts
- Services that provides information

about a patient
- Access log, where we create data
- Person service

• Existing services with multiple
consumers

• Not that easy to adapt to new
requirements

ANALYSING EXTERNAL DEPENDENCIES

• Services that provide information
about a patient
- getXForPatient(patientId)
- Not mandatory (phew!)

• Decision: OK, but use resilience
mechanisms

ANALYSING EXTERNAL DEPENDENCIES

• Create: access log (who has seen what
information about a patient)
- ”small batch”

• Decision: asynchronous flow
- low risk of error

PERSON SERVICE

• Person information from Skatteverket
(Swedish tax agency)

• Contact information
• ”Reserve id”

• Mainly a data store, but also provides
some functionality

PERSON SERVICE - EXISTING SOLUTION

• Cache - but not available in offline mode
• Still a need to call person service in certain situations - no complete time autonomy
• Missing some functionality
• Solution originally designed for reading files directly from Skatteverket

PERSON SERVICE - NEW SOLUTION

• Duplicate data and functionality, or
depend on service availability?

• Decision: Rely fully on person service
- Person service is of highest

availability class (no service
windows)

- Person service implements desired
functional services

CLOSING WORDS

• Know the ideal architecture for realising your primary goals
- and know the tradeoffs for that architecture

• Make decisions based on your specific circumstances
- Organisational
- Architectural

