MONITORING INTHE CLOUD

ERIK LUPANDER

CADEC 2022.02.02 | CALLISTAENTERPRISE.SE

CALLISTA

MIDDLE AGED MEN...

CROSSFIT

CC: HTTPS://WWW.FLICKR.COM/PHOTOS/RUNARE/13472386673

CYCLING

PADEL

ELECTRIC CARS

ELECTRIC CARS

TODAY'S TOPIC:

THE ELECTRIC CAR CHARGING PROBLEM

CCO: MAX PIXEL

HOW TO AVOID CHARGING QUEUES?

CHARGER AVAILABILITY METRICS!

AND SO OUR JOURNEY BEGINS...

WHERE IS THE DATA??

ChargeFinder

IONITY Mariestad

Ulriksdal, Mariestad, Sweden

Laddare

^ 350 kW CCS

SE*ION*E303501

8,70 kr/kWh

SE*ION*E303502

8,70 kr/kWh

SE*ION*E303503

8,70 kr/kWh

SE*ION*E303504

8,70 kr/kWh

4/4

Tillgänglig

Tillgänglig

SCREEN SCRAPING?!?!?

PUBLIC DOMAIN: FREESVG.ORG/PUKE-MAN

```
Timing
                                                        Cookies
×
    Headers
               Preview
                         Response
                                     Initiator
▼ General
   Request URL: https://adm.chargefinder.com/status/3qg2q
   Request Method: GET
   Status Code: 9 200
   Remote Address: 52.16.172.234:443
   Referrer Policy: strict-origin-when-cross-origin
    Headers
                                     Initiator
                                               Timing
                                                        Cookies
               Preview
                         Response
```

```
X Headers Preview Response Initiator Timing Cookies

[{id: "SE*ION*E303501", status: 2, price: "8,70 kr/kWh", free: null},...]

▼ 0: {id: "SE*ION*E303501", status: 2, price: "8,70 kr/kWh", free: null}

free: null

id: "SE*ION*E303501"

price: "8,70 kr/kWh"

status: 2

▶ 1: {id: "SE*ION*E303502", status: 3, price: "8,70 kr/kWh", free: null}

▶ 2: {id: "SE*ION*E303503", status: 2, price: "8,70 kr/kWh", free: null}

▶ 3: {id: "SE*ION*E303504", status: 2, price: "8,70 kr/kWh", free: null}
```

THE SOLUTION

- Call Chargefinder's API every 15 minutes for the ~20 charging sites I'm interested in for the upcoming winter season.
- Store the data for later querying

C ChargeFinder

MY REQUIREMENTS

- Not too expensive...
- Not in my closet
- Long data retention
- Powerful querying

USE MANAGED INFRASTRUCTURE IN THE CLOUD

THE OTHER PIECE...

CHOICE OF DATABASE

WHAT KIND OF DATA ARE WE GOING TO STORE?

JSON FROM CHARGEFINDER...

...WHICH WE TRANSFORM...

...INTO DATA "ROWS"

Site	Time	Available
Ionity Mariestad	2021-11-12T12:00:00	3
Ionity Mariestad	2021-11-12T12:15:00	2
Ionity Mariestad	2021-11-12T12:30:00	4

INDEX AND QUERY FRIENDLY!

Site	Time	Available	Day of week	Hour of day
Ionity Mariestad	2021-11-12T23:45:00	3	Friday	23
Ionity Mariestad	2021-11-13T00:00:00	2	Saturday	0
Ionity Mariestad	2021-11-13T00:15:00	4	Saturday	0

THIS LOOKS LIKE A TIME SERIES

TO ME.

TIME SERIES DATABASES

CHOICE OF TIME SERIES DATABASE

- Relational- and document databases often provide time-series storage as well
 - I decided to focus on dedicated Time-Series databases
- AWS TimeStream, AWS Managed Service for Prometheus and InfluxDB Cloud
 - Fully managed
 - Zero up-front cost
- InfluxDB Cloud offers very powerful querying through its Flux query and scripting language as well as many visualization types

ARCHITECTURE


```
AWS Cloud
export class ChargerStatusStack extends cdk.Stack {
    constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
        super(scope, id, props);
```


CALLISTA

CDK stack

CDK stack


```
// main is called when a new lambda starts, so don't
// expect to have something done for every query here.
func main() {
   logrus.Info("init charger status recorder")

   // load secrets etc. Will panic on errors.
   configure()

   lambda.StartWithContext(context.Background(), handler)
}
```


CDK stack

iw.writeApi.WritePoint(p)

SetTime(time.Now)

EAL CEK Aack InfluxDB Cloud

WHAT IS A TIME-SERIES DATABASE?

TO ANSWER THIS, WE NED TO UNDERSTAND:

WHAT IS A TIME SERIES?

Consumption (kWh)

WHAT IS A TIME SERIES?

- A series name describing the what we are observing:
 - Temperature, Stock quote, Number of available chargers, CPU load...
- However...
 - Which thermometer?
 - Which stock?
 - Which charging site?
 - Which CPU of which Server in which data center?
- A time series also needs **metadata** describing the context of the data points:
 - commonly known as a tag or label

CHARGER AVAILABILITY TIME SERIES

- We are observing availability
- Our data has three tags:
 - Charging site
 - Weekday (Monday to Sunday)
 - Hour of day (0-24)

Site	Time	Available	Day of week	Hour of day
Ionity Mariestad	2021-11-12T23:45:00	3	Friday	23
Ionity Mariestad	2021-11-13T00:00:00	2	Saturday	0
Ionity Mariestad	2021-11-13T00:15:00	4	Saturday	0

LET'S COMPUTE A TIME SERIES KEY!

TIME SERIES KEY

TIME SERIES KEY

EXAMPLE SERIES KEY

'availability: lonity Mariestad: Saturday: 23'

"availability: Ionity Mariestad: Thursday: 23"

"availability: Ionity Mariestad: Thursday: 21"

HOW MANY TIMES SERIES IN THE TABLE?

SERIES 1: [lonity Mariestad] + [Friday] + [23]

SERIES 2: [lonity Mariestad] + [Saturday] + [0]

Site	Time	Available	Day of week	Hour of day
Ionity Mariestad	2021-11-12T23:45:00	3	Friday	23
Ionity Mariestad	2021-11-13T00:00:00	2	Saturday	0
Ionity Mariestad	2021-11-13T00:15:00	4	Saturday	0

TIME SERIES KEYS

- Uniqueness of tags means that for "Ionity Mariestad" we will have
 - 1 site
 - 7 weekdays
 - 24 hours per day
 - => 168 time series per charging site

Q site=Max Alingsås				
it / hour_of_day = 13 site = Max Alingsås weekday = Wedn	esc			
ity hour_of_day = 21 site = Max Alingsås weekday = Sunda	ay			
ity hour_of_day = 9 site = Max Alingsås weekday = Sunda	y			
ity hour_of_day = 1 site = Max Alingsås weekday = Tuesda	ay			
ity hour_of_day = 9 site = Max Alingsås weekday = Saturd	lay			
ity hour_of_day = 7 site = Max Alingsås weekday = Tuesda	ay			
ity hour_of_day = 12 site = Max Alingsås weekday = Thurs	da			
ity hour_of_day = 21 site = Max Alingsås weekday = Friday	y			
ity hour_of_day = 10 site = Max Alingsås weekday = Wedn	esc			
ity hour_of_day = 2 site = Max Alingsås weekday = Thurso	day			
ity hour_of_day = 17 site = Max Alingsås weekday = Tuesd	lay			
ity hour_of_day = 14 site = Max Alingsås weekday = Thurs	da			
ity hour_of_day = 0 site = Max Alingsås weekday = Sunda	ıy			
ity hour_of_day = 0 site = Max Alingsås weekday = Thurso	day			
ity hour_of_day = 19 site = Max Alingsås weekday = Tueso	day			

itybour of day - Ocita - May Alipacåe wookday - Eriday

	_time	site	hour_of_day	weekday	available
I	2021-11-24 14:00:00	Max Alingsås	13	Wednesday	1,25
I	2021-12-01 14:00:00	Max Alingsås	13	Wednesday	1,25
	2021-12-08 14:00:00	Max Alingsås	13	Wednesday	1,75
	2021-12-15 14:00:00	Max Alingsås	13	Wednesday	1,50
	2021-12-22 14:00:00	Max Alingsås	13	Wednesday	1,50
ı	2021-12-29 14:00:00	Max Alingsås	13	Wednesday	2
	2022-01-05 14:00:00	Max Alingsås	13	Wednesday	1
	2022-01-12 14:00:00	Max Alingsås	13	Wednesday	2

Data points for a single series aggregated per hour (UTC)

All series for site=Max Alingsås

_time	site	hour_of_day	weekday	available
2021-11-24 13:15:00	Max Alingsås	13	Wednesday	1
2021-11-24 13:30:00	Max Alingsås	13	Wednesday	1
2021-11-24 13:45:00	Max Alingsås	13	Wednesday	1
2021-11-24 14:00:00	Max Alingsås	13	Wednesday	2
2021-12-01 13:15:00	Max Alingsås	13	Wednesday	1
2021-12-01 13:30:00	Max Alingsås	13	Wednesday	1
2021-12-01 13:45:00	Max Alingsås	13	Wednesday	1
2021-12-01 14:00:00	Alingsås	13	Wednesday	2
2021-12-08 13:15:00	Max. ngsås	13	Wednesday	2

Data points without per-hour aggregation

TIMES SERIES CARDINALITY

- If we're tracking ~20 charging sites each having 168 distinct time series, we'll have ~3660 time series.
- Without aggregation, filtering, grouping and proper visualization this data is rather useless

THE FLUX QUERY LANGUAGE

FLUX

- A general functional data scripting and query language (primarily for InfluxDB)
- Operates on Data Sources, not just InfluxDB data
 - InfluxDB, CSV, SQL
- Similar to ETL, composable streams etc.
- Supports
 - custom functions
 - pivot, join
 - map, reduce
 - histograms
 - much more...

INFLUXDATA

SO - WHAT IS A TIME SERIES DATABASE!?!

TIME SERIES DATABASES

- The secret sauce is the columnar store model
- Data is structured in a read-friendly manner suitable for querying huge data sets
- Writing records needs many writes
- Worth looking into!!

ID	NAME	SIZE	AGE
1	Erik	M	43
2	Lance	L	32
3	Angela	S	71

ID		
1		
2		
3		

NAME	
Erik	
Lance	
Angela	

SIZE	
M	
L	
S	

AGE	
43	
32	
71	

TIME SERIES DATABASES

- Data is very suitable for compression
 - Low variance
- Facebook whitepaper:
 - https://www.vldb.org/pvldb/vol8/p1816-teller.pdf
 - needs 16 bytes per metric data point
 - Compressed, they need 1.37 bytes on average! (about 11 bits)
- Time series data is 3 tuples:
 - series key (label + tags)
 - » timestamp
 - » value

	delta-of-delta	delta	_time		site		_value	
	1634677228	1634677228	2021-10-19 21:00:28 UT	С	Bilmetro Noret			4
	899	899	2021-10-19 21:15:27 UTC	;	Bilmetro Noret	8 bytes	per int64	4
2 bytes per	int16	901	2021-10-19 21:30:28 UT	С	Bilmetro Noret			4
	0	899	2021-10-19 21:45:27 JT0	С	Bilmetro Noret			4
	2	901	2021-10-19 22:00:28 UT	С	Bilmetro Noret			4
	0	899	2021-10-19 22:15:27 UTC	5	Bilmetro Noret			4
	2	901	2021-10-19 22:30:28 UT	С	Bilmetro Noret			4
	1	bytes per int8	2021-10-19 22:45:28 UT	С	Bilmetro Noret			4
	1	900	2021-10-19 23:00:28 UT	С	Bilmetro Noret			4
	1	900	2021-10-19 23:15:28 UT	С	Bilmetro Noret			4
			2021-10-19 23:30:27 UT	С	Bilmetro Noret			4
			2021-10-19 23:45:28 UT	С	Bilmetro Noret			4
			2021-10-20 00:00:28 UT	гс	Bilmetro Noret			4
CALLISTA			2021-10-20 00:15:28 UT	С	Bilmetro Noret			4

- delta or delta-of-deltas
 can also be represented as
 value X repeated N
 number of times
- Can lead to less than 1 bit used per value:)

_time	site	_value	
2021-10-19 21:00:28 UTC	Bilmetro Noret		4
2021-10-19 21:15:27 UTC	Bilmetro Noret		4
2021-10-19 21:30:28 UTC	Bilmetro Noret		4
2021-10-19 21:45:27 UTC	Bilmetro Noret		4
2021-10-19 22:00:28 UTC	Bilmetro Noret		4
2021-10-19 22:15:27 UTC	Bilmetro Noret		4
2021-10-19 22:30:28 UTC	Bilmetro Noret		4
2021-10-19 22:45:28 UTC	Bilmetro Noret		4
2021-10-19 23:00:28 UTC	Bilmetro Noret		4
2021-10-19 23:15:28 UTC	Bilmetro Noret		4
2021-10-19 23:30:27 UTC	Bilmetro Noret		4
2021-10-19 23:45:28 UTC	Bilmetro Noret		4
2021-10-20 00:00:28 UTC	Bilmetro Noret		4
2021-10-20 00:15:28 UTC	Bilmetro Noret		4

TIMES SERIES DATABASES - MORE THAN METRICS?

PERHAPS THE QUESTION TO ASK IS:

WHAT IS A METRIC?

MORE THAN METRICS?

- Traditionally, we've collected technical metrics from servers such as CPU, memory usage and request/ response durations
- Business metrics have belonged to BI solutions
- Perhaps we'll see time series databases in the BI domain?

CC BY-SA 4.0: WIKIMEDIA COMMONS

"Virtually every data mart is a time series"

- RALPH KIMBALL, 1997

Gross Amount: \$0.00

Tax: \$0.00

Total: 282 696 entries

Invoice Due (USD): \$0.00

FINAL WORDS

- A technology stack built around AWS services and the Cloud Development Kit provides a really cost-effective way to build and deploy services in the cloud.
- Time Series databases are picking up traction both in the traditional metrics and IoT domains, as well as emerging as an alternative for business-oriented metrics such as event streams and some scenarios otherwise typically provided by Business Intelligence software.

WAIT A MINUTE?!?!

WHAT ABOUT THE CHARGER STATS?

CALLISTA

FINAL WORDS - CHARGER AVAILABILITY

- Planning is key for a smooth journey
- And while I really like and enjoy my electric car...
- ... I'll borrow a diesel car for the upcoming ski trip.:(

THANK YOU!

RESOURCES

- Facebook's whitepaper
 - Link: https://www.vldb.org/pvldb/vol8/p1816-teller.pdf
 - Summary: https://jessicagreben.medium.com/four-minute-paper-facebooks-time-series-database-gorilla-800697717d72
- ChargeFinder:
 - https://chargefinder.com

QUESTIONS?