MICROSERVICES | PRAKTIKEN

frdn troga monoliter till en arkitektur for kortare ledtider,
hogre skalbarbet och okad feltolerans

MAGNUS LARSSON
2015.05.21 | CALLISTAENTERPRISE.SE

AGENDA

* What’s the problem?

* New solutions to old problems...

What’s a microservice?

New challenges with microservices

Implementing microservices

Demonstration

WHAT'S THE PROBLEM??

* Well known problems

with monolithic applications

— Poor scalability and resilience

— Long release cycles

e ...we hade tried to solve these

problems before (and failed?)...

 But there are new opportunities now!

ArchiMate 2.0 syntax

Node =,

5
Process =) N 2

EALRA

Business 1+

Function

HISTORY OF MICROSERVICES
* Microservices was first heard of in May 2011

* Success stories from early adopters

migrating from monoliths to microservices
— Amazon (http://goo.gl/L{sD67)
- eBay (http://goo.gl/dodV2c¢)
- Gilt (http://goo.gl/yVVox9)
— Groupon (https://goo.gl/uKTtAs)
- Karma (https://g00.gl/kXObAQO)
— Netflix: Part 1, part 2 and Fast Delivery
(https://goo.gl/MVgHMI1, https://goo.gl/fDeZ5A, https://goo.gl/hN6ZCL)
— SoundCloud: Part 1, part 2 and part 3
(https://g0o.gl/Xq0Cgm, https://goo.gl/sw]8Vt, https://goo.gl/T20N8I)

THE SCALABILITY CHALLENGE...

7 THE INTERNET OF THINGS

AN EXPLOSION OF CONNECTED POSSIBILITY

34.BBILLIEH-----------—---------...-..__‘:
wn4piuon (B

22.9 BLLION

AR

013

BT BILLION T

o

I T

loT INCEPTION (6
000000 05BN (@),

YEAR

Source:
5 http://www.theconnectivist.com/2014/05/infographic-the-growth-of-the-internet-of-things/

NEW SOLUTIONS TO OLD PROBLEMS

* Strong trend moving from “Big Iron” to many small servers
— 'Typically virtual servers
— In cloud or/and on premises
— Better price/performance

ro n

NEW SOLUTIONS TO OLD PROBLEMS

* Cloud computing makes it easier to manage many small servers

— TaaS: Infrastructure as a Service
» Deliver virtual servers

» E.g. Amazon EC2, Windows Azure, Google Compute Engine et. al.

— PaaS: Platform as a Service
» Deliver an application platform

» E.g. Heroku, Red Hat OpenShift, Pivotal Cloud Foundry et. AL
» Note: Some PaaS can be used on premises, e.g. OpenShift and Cloud Foundry

— Docker, the Container revolution...

» IaaS + PaaS = CaaS P

NEW SOLUTIONS TO OLD PROBLEMS

* How to fit monolithic applications in a number of small boxes?
O
AN A

AT \,

NEW SOLUTIONS TO OLD PROBLEMS

* We need to split the monolith to make it fit...

QQQQ
AR

NEW SOLUTIONS TO OLD PROBLEMS

* Splitting the monolith also makes it easier to scale...

— Auto scaling provided by platforms

QQQO
NTA

AN~ A
A I (A
AN A

WHAT'S A MICROSERVICE?
* A software component that is independently replaceable and upgradeable

* Share nothing architecture
— 'They don’t share databases!

— Only communicate through well defined interfaces,

» E.g. REST services or queuing mechanisms

* Typically deployed as separate runtime processes

WHAT'S A MICROSERVICE?

O

N

N
NTA

=)

WHAT'S A MICROSERVICE?

A
A

O

N

N

O O
A A

O
[

Shorter release cycles

So much easier to update
or replace a microservice
compared to a monolith.

A

A

A

WHAT'S A MICROSERVICE?

O O O

5 How big is/a microservice?

A) «—Small-enough-to fitin

A
the head of a developer
ALAEA |

«—Big enough to notjeopardize
* Performance
« | Data consistency

HOW DOES MICROSERVICES FIT INTO AN EXISTING SYSTEM LANDSCAPE?

@ X DDDm : ,}_,_-'g‘\.“
A A cig gt 3¢ INTERNETor

= N[= QDD 9 THINGS

il Dﬂ' "'__° ..

Partner Applications <

() External API Platform)

() Enterprise Service Bus)

QO N © o ©
ANEA AIN Al

16 Monolith A Monolith B Monolith C EACESIA

WHAT'S A MICROSERVICE?
External APl | OAuth 2.0

Application E

* Application level

— An application is built up by

a number of microservices

Q

» Deployed on a number of nodes

Q’@ PN

— Microservices are typically not

O O
exposed outside of the application N 2 |
» Dedicated Edge-services —/f
handles requests from the N O
outside (internal and external) $
Internal API I

» Internal microservices can be

upgraded and replaced quickly

WHAT'S A MICROSERVICE?

* System landscape level...

SAEhh s P | External API Platform)
CXiStiI‘lg ap p lications () Enterprise Service Bus)
— If a SOA is applied, ol ©
typically an ESB is in place... Q O Q O
QO Q®
Q Q Q Q QQ Qﬁ
— If an API platform is applied,

external calls comes through it Monolith A Monolith B ApplicationC
(based on microservices)

WHAT'S A MICROSERVICE?
e SOA vs. Microservices

— SOA and microservices
don't conflict, they S o A
complement each other!

— SOA is about how to reuse
existing functionality as services...

Micro-
services

— Microservices is about how to
make functionality to scale

better with high resilience
and short release cycles...

NEW CHALLENGES WITH MICROSERVICES

* Managing large numbers of microservices...

— Where are they and are they ok???

QO QO [éi QO

o)) =0 (%) (e

2P P [P | [A°

20

NEW CHALLENGES WITH MICROSERVICES

* What went wrongr??

21

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

* Minor effect if a small microservice fails than a big monolith...

. VS 0| |13

22

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

 Beware of chain reactions... 5
— A.k.a “chain of failures” Q N

7 Q@/

A}

23

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

 Beware of chain reactions...
— A.k.a “chain of failures” .

o 0

00—
Circuit Breaker to the rescue! | - R

e
* Prevents calls when too many ' e

errors are observed

 Directs the call to a fallback method

* Retries the call periodically

24

NEW CHALLENGES WITH MICROSERVICES

* Managing large numbers of microservices requires tools for

— Runtime discovery of services
» New services can auto-register at startup

— Dynamic router and load balancer
» Clients can detect new instances as they are started up

— Centralized log management
» Collects and visualize log events from distributed processes

— Circuit breaker
» Prevent problems with chain of failures

— Protecting external API’s
» Secure external API’s using OAuth 2.0

25

NEW CHALLENGES WITH MICROSERVICES

* Managing ége numbers of microservices re lEun‘es tiols for

~20UIrce
» New SCIYgCEs Ca uto- reglster at startu ij
i [1‘ g.rescue

» Clients can detect new instances as they are started up

*’elasticsearch.

M Kibana

— Runtim

L _lUl\r\.«l..llls CALVL 1...(«[1 A.PI S SPR|NG CLOUD
» Secure external APT’s using OAuth 2.0

26

AGENDA - WHERE ARE WE?

* Implementing microservices

e Demonstration

27

IMPLEMENT MICROSERVICES WITH OPEN SOURCE

NETFLIX ° Netflix OSS (http://goo.gl/DHOf40)
0OsSssS — Since 2011, Netflix has been releasing components of

their cloud platform as free and open source software
— Obviously proven in battle...

@ * Spring Cloud (http://goo.gl/vHVdEp)
— Spring Cloud simplifies use of Netflix OSS
SPRING CLOUD — Add own components, e.g. OAuth 2.0 support

— Based on Spring Boot and the “convention over canﬁgumz‘ion”paradigm

*__,\'_elastitsearth. e The EILK stack (https//googl/aCthN)
logstash — Elasticsearch, Logstash and Kibana

— Used for centralized log analyses

M Kibana

28

SOFTWARE COMPONENTS

Operations Component Netflix, Spring, ELK

Service Discovery server Netflix Eureka

Dynamic Routing and Netflix Ribbon

Load Balancer

Circuit Breaker Netflix Hystrix

Monitoring Netflix Hystrix dashboard and Turbine
Edge Server Netflix Zuul

Central Configuration server | Spring Cloud Config Server

OAuth 2.0 protected API’s | Spring Cloud +
Spring Security OAuth2

Centralized log analyses Logstash, Elasticsearch, Kibana (ELK)

29

DEMO SYSTEM LANDSCAPE

30

* An API for product-information

* A composite service aggregate
information from three core-
SErvices

e Plus infrastructure services for
OAuth, Discovery and Edge-

SErvers...

Curl

Product API

Product Composite

gl

~N:

= S

QO

Products

Reviews

Recommendations

' DEMO SYSTEM LANDSCAPE

Edge server
(Netflix Zuul)

OAuth token relay

CB/LB

OAuth
Authorization
Server
(spring-security)

Service
Discovery
(Netflix Eureka)

31

E Monitor

Product API OAuth Res Dashboard
(Netflix Turbine +
Q Hystrix Dashboard)

~cone |
I

QQ

Logging
Analyses

Product Composite

(ELK stack)

ﬂ®

Products Reviews Recommendations

Legend

CB = Circuit Breaker (Netflix Hystrix)
LB = Load Balancer (Netflix Ribbon)

CENTRALIZED LOG ANALYSIS
A

 Each microservice log events

to local log-file

corr-id=nnn productId=12345

API service marks the request
with a correlation-id

Correlation-id transferred
between microservices

LOG LOG LOG

 Easy to find correlated log-event

in the log-event database

32

DEPLOY
— Sample configuration file
* In cloud __
— Using PaaS: Pivotal Web Services memory: S12M
instances: 1
6 of push (https://g00.g1/130DGt) applications:
- name: product-api-service
path: product-api.jar
* On premises — Sample configuration file
— Using Docker

discovery:
image: callista/discovery-server

$ docker-compose start

pro:
image: callista/product-service
links:
- discovery

33

DEPLOY
— Sample configuration file

memory: 512M
instances: 1
applications:
- name: product-api-service

Java-jar files and — path: product-api.jar

Docker images are
created.by build scripts

— Sample configuration file

discovery:
image: callista/discovery-server

pro:
image: callista/product-service
links:
- discovery

34

DEMO SLIDES

Discovery server

Centralized log analysis

Scale up

Resilience

35

THE DISCOVERY SERVER

Instances currently registered with Eureka

Application AMIs Availability Zones Status

EDGESERVER n/a(l) (1) UP (1) - 172.17.0.70:edgeserver:b74a3b6279298de049546f78f8cde438
PRODUCT n/a(1) (1) UP (1) - 172.17.0.64:product:81409c2245b0135600a481972c9bfef8
PRODUCTAPI n/a(l) (1) UP (1) - 172.17.0.68:productapi:9bb492a65a85c9e2d76e18adec3d5c09
PRODUCTCOMPOSITE n/a(1) (1) UP (1) - 172.17.0.66:productcomposite:afb55f6fb35cd6alfac33c6e0elf6cds
RECOMMENDATION n/a(l) (1) UP (1) - 172.17.0.60:recommendation:56bal37a59ceeb7118f4431b90f76d1a
REVIEW n/a(l) (1) UP (1) - 172.17.0.62:review:3db2f7d0117f6041e87359b6c25b29e6

3% CALLISTA

CENTRALIZED LOG ANALYSIS - KIBANA

@timestamp A »

2015-05-09T08:53:46.141+02:00
2015-05-09T08:53:46.142+02:00
2015-05-09T08:53:46.154+02:00
2015-05-09T08:53:46.163+02:00
2015-05-09T08:53:46.170+02:00
2015-05-09T08:53:46.171+02:00
2015-05-09T08:53:46.177+02:00
2015-05-09T08:53:46.326+02:00
2015-05-09T08:53:46.340+02:00
2015-05-09T08:53:46.341+02:00
2015-05-09T08:53:46.348+02:00
2015-05-09T08:53:46.460+02:00

2015-05-09T08:53:46.473+02:00

< corrid)

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

4 _type 2
product-api
product-api
product-composite
product
product-composite
product-composite
recommendation
recommendation
product-composite
product-composite
review

review

product-api

4 message

execute command: getProductComposite
ProductApi: User=user, Auth=Bearer e272fb85-6}
execute command: getProduct

/product called

execute command: getRecommendations
GetRecommendations...

/recommendation called, processing time: 147
/recommendation response size: 3

execute command: getReviews

GetReviews...

/reviews called, processing time: 109

/reviews response size: 3

GetProductComposite http-status: 200

SCALE UP

* Let’s scale up one of the services

S docker-compose scale rec=2

$ docker-compose ps
Name

;1;;:1_ Q O

o Recommendations

@timestamp A » <« HOSTNAME » 4 _type» 4 corrid » { message
2015-05-09T08:53:42.539+02:00 8c0edf567efd recommendation 623010bf-677d-4ea0-ae3c-0683550240e4 /recommendation called, processing time: 175

2015-05-09T08:53:42.717+02:00 8c0edf567efd recommendation 623010bf-677d-4ea0-ae3c-0683550240e4 /recommendation response size: 3

2015-05-09T08:53:44.915+02:00 beeab8b76d07 recommendation 09b176af-4093-48f4-973e-a6f0f8489726 /recommendation called, processing time: 122

2015-05-09T08:53:45.040+02:00 beeab8b76d07 recommendation 09b176af-4093-48f4-973e-a6f0f8489726 /recommendation response size: 3

SCALE UP

* 'The new service instance in the discovery server

Instances currently registered with Eureka

Availability

Application Zones

n/a

EDGESERVER (1) (1) UP (1) - 172.17.0.23:edgeserver:bf311b440f4e4f66c87815173ec6787d
PRODUCT ?1/)3 (1) UP(1)-172.17.0.17:product:572cd15b44calcfdcOca2b23b885998f
PRODUCTAPI ("1/)8 (1) UP (1) - 172.17.0.21:productapi:6d9e4ec6da84fdba1701efd737e4fe51
PRODUCTCOMPOSITE n/a (1) UP (1) - 172.17.0.19:productcomposite:10bca9e845a5871cf6372fbea71105b0

(1)

UP(2) - 172.17.0.13:recommendation:dd364a10b6e735e834821137ea8ffe62

aFgell izt ar el 172.17.0.11:recommendation:cae6elce5527cafablbb854f2c93eac8

REVIEW ?1/)3 (1) UP(1)-172.17.0.15:review:46fec4812d0971b45adaeeOeOaef635¢

39

CALL THE API

e Get an access token from the OAuth Authentication Server

$ curl -s acme:acmesecret@docker:9999/uaa/ocauth/token \
-d grant type=password -d client id=acme \
—-d username=user -d password=password | jgq .

{"access token": "eb863174-6a25-4e4d-9fe0-32532a842d88",

e Call the API with the access token

$ curl -s 'http://docker:8765/api/product/12345" \
-H "Authorization: Bearer S$TOKEN"| Jjqgq .

{

"productId": 12345, "name": "name",
"recommendations": [{...}, {...}, {...} 1,
"reviews": [{...}, {...}, {...}]

40

CIRCUIT BREAKER

e Introduce an error P — =l
. 3 Product O
— 'The review service stops to response, Composite Q
requests just hangs until requests timeout

* Try out /

* Force the Circuit to open ™~ | e |
— Coming requests will fast-fail,

i.e. not wait for the timeout! Products REiES Resemmenekiiens
getReviews getReviews getReviews
1 0.0 % 0 100.0 % 100.0 %
00 0|0 0
0 1 20
Host: 0.1/s Host: 0.1/s HD&;'L:2.0/S
Cluster: 0.1/ |:> Cluster: 0.1/s ‘ Cluster: 2.0/s
Circuit Closed Circuit Closed Circuit Open
Hosts 1 90th 170ms Hosts 1 90th Oms Hosts 1 90th Oms
Median 170ms 99th 170ms Median Oms 99th Oms Median Oms 99th Oms
Mean 148ms 99.5th 170ms Mean Oms 99.5th Oms

A1 Mean Oms 99.5th Oms

CIRCUIT BREAKER

* Normal calls (circuit):
$ curl 'http://docker:8765/api/product/12345’
{"productId”: ..., "recommendations": [...], "reviews”:
e Calls with a few timeouts (circuit still Il
$ curl 'http://docker:8765/api/product/12345"
{"productId”: ..., "recommendations": [...], "reviews”:null}
3.295 ms

e Calls with a lot of timeouts (circuit open, i.e. it will

$ curl 'http://docker:8765/api/product/12345’
{"productId”: ..., "recommendations": [...], "reviews”:null}

42

...WHAT WE DIDN'T HAVE TIME TO TALK ABOUT (THIS TIME)

'The CAP theorem and distributed systems, eventual consistency...

Conway’s law requires organizational changes

Continuous Delivery, a pre-requisite for large-scale use of microservices

How to apply TDD for microservices?

43

SUMMARY

* Microservices use new solutions to old problems regarding

— Scalability, resilience, release cycles

* Microservices is about splitting up monoliths in units of

independently replaceable and upgradeable components

* Uses infrastructure for scaling out on many small servers

— In cloud or on premises

* New advanced, battle-proven and open source tools

for handling challenges with microservices
— Netflix OSS, Spring Cloud and the ELK stack

44

Q&A

* Want to know more?

— Try out our blog series: Building Microservices (http://g00.gl/bSg5mC)

45

