
GO WEST 2020-02-19 | CALLISTAENTERPRISE.SE

GO PROFILING

ERIK LUPANDER

AGENDA

• Introduction
• Go profiling with pprof
• Case study
• Summary

INTRODUCTION

ABOUT THE SPEAKER

• Erik Lupander
• Architect & Developer at Callista
• 15+ years of Java EE & Spring
• Started coding Go in 2015
- Full time Go projects for the last year
» And it’s my language of choice!

WHAT’S PROFILING ANYWAY?

• Dynamic program analysis
• Runtime analysis
- Memory use / allocations / gc
- Freq / duration of calls
- On a very fine-granular level

• Used for optimization and
troubleshooting
- Waiting for IO ;)

PROFILING THROUGH CODE INSTRUMENTATION

• Compiles or runtime-injects measurement code
into your application

• Allows fine-grained study of code-paths,
allocations etc.
- May have performance impact or require

agents on servers etc.
• Exists for many languages

GO TOOL PPROF

PPROF

• Tool authored by Google for
visualization and analysis of profiling
data

• Based around profiling samples stored
in a protobuf format
- A sample ”describes a program call

stack and a number or weight of
samples collected at a location”

PPROF - VISUALIZATIONS

• What:
- Interactive console UI

PPROF - VISUALIZATIONS

• What:
- Interactive console UI
- Viz-based visualizations

PPROF - VISUALIZATIONS

• What:
- Interactive console UI
- Viz-based visualizations
- Listings (text / web)

PROFILING TYPES

• /debug/pprof/profile
- CPU, time spent in file/func/line
» But not invocations counts!

• /debug/pprof/heap
- in-use objects and space
- allocs objects and space

• /debug/pprof/block
- Blocked goroutines

• /debug/pprof/mutex
- Holders of contended mutexes

• /debug/pprof/trace
WIKIPEDIA

HOW TO ADD PROFILING TO YOUR GO CODE?

• Very easy:
- The HTTP way or the Programmatic way

HOW TO ADD PROFILING TO YOUR GO CODE?

package main

import (
 "log"
 "net/http"
 _ "net/http/pprof"
)

func main() {

 go func() {
 log.Println(http.ListenAndServe("localhost:6060", nil))
 }()

 // rest of your program
}

CAPTURE A PROFILE - GO TOOL

• While your program is executing, run:
- go tool pprof http://localhost:6060/debug/pprof/profile
» Opens the pprof console with the produced profile loaded

- go tool pprof -png http://localhost:6060/debug/pprof/profile > profile.png
» Produces a viz graph in PNG format

- Both saves a .pprof file to disk into ~/pprof (on my mac)
• One can also do a HTTP GET from curl / web browser and the result will be

downloaded

http://localhost:6060/debug/pprof/profile
http://localhost:6060/debug/pprof/profile

THE PPROF CONSOLE

THE DEMO PROGRAM

• Toy program that calculates prime numbers to simulate load in interdependent
functions

main
() A()

C()

B()

D()

PPROF CONSOLE - TOP

PROFILER BASICS

• Measurements:
- flat => time spent in own function
- flat % => percentage of program time spent in own function
- cum => cumulative time spent in self + all child functions
- cum % => cumulative % spent in self + all child functions
- sum % => sum of flat

main
() A()

C()

B()

D()

PPROF CONSOLE - TOP

PPROF - VIZ GRAPHS

• Bigger boxes or thicker arrows
means more time spent

• Shows call hierarchies
• Numbers:
- profile / mutex / blocks:

time in ms
- heap: memory size in MB
- heap allocs: number of

allocs

PPROF - VIZ GRAPHS

• Bigger boxes or thicker arrows
means more time spent

• Shows call hierarchies
• Numbers:
- profile / mutex / blocks:

time in ms
- heap: memory size in MB
- heap allocs: number of

allocs
• Many-to-one

PPROF CONSOLE - LISTING

MY PET-PROJECT PPROF USE-CASE

RENDER #1 RENDER #2

FIND THE DIFFERENCE

3 min 14sec 1.6 sec

WHY RAY-TRACING?

• Just for fun!
• Book: ”The Ray Tracer challenge”
• Relatively simple renderer
• CPU intensive task, good fit for profiling

PRAGPROG.ORG

http://pragprog.org

RAY-TRACING IN 3 MINUTES

SOURCE: WIKIPEDIA

IT’S ALL ABOUT THE COLOR

OF EVERY SINGLE PIXEL

WHY PROFILING?

• Once the book was finished,
rendering was rather slow.

NAIVE IMPLEMENTATION

• Single-threaded
• Plain Go code
- No 3rd party libraries for math etc.

• Correctness over premature optimization
- No caching, prefer immutability
- ”… never-ending series of headaches…”

REFERENCE IMAGE

• Reference image
- 9 primitives
- Reflection and refraction

• At 640x480:
- 307 200 pixels
- Limited recursion depth
» Max 5 reflections and 5

refractions per ray

TWO OPTIMIZATION ROUTES

• Algorithm specific:
- ”Do Less Work”
» Bounding boxes

WIKIPEDIA

TWO OPTIMIZATION ROUTES

• Algorithm specific:
- ”Do Less Work”
» Bounding boxes
▸ BVH

- Reduce number of intersection
checks

• Implementation specific:
- Use Go profiling tools to find

bottlenecks and optimize
accordingly

WIKIPEDIA

STEP 1 - MULTI-THREADING

• ”Embarrassingly parallell problem”
• Worker-pool implementation
• 1 -> 8 threads
• Performance improved performance by:

2.25x
~1 min 30sec

FIRST RUN OF PPROF - CPU PROFILING

• I added the pprof HTTP boilerplate code and then captured
a 30-second time window using /debug/pprof/profile
with .PNG export

HEAP - MEMORY USE / ALLOCATIONS?

• Heap size seemed OK at 44 mb
• Could we be performing an excessive number of memory allocations?
• pprof does that too with the -alloc_objects flag!
- go tool pprof -alloc_objects -png http://localhost:6060/debug/pprof/heap

http://localhost:6060/debug/pprof/heap

~12 700 allocations per pixel!

154 GB of RAM allocated

WHAT ARE THE
INVERSE() AND SUBMATRIX()

 FUNCTIONS DOING!?!?

STEP 2 - FIX INVERSE() AND SUBMATRIX

func Submatrix4x4(m1 Mat4x4, deleteRow, deleteCol int) Mat3x3 {
 m3 := NewMat3x3(make([]float64, 9))
 idx := 0
 for row := 0; row < 4; row++ {
 if row == deleteRow {
 continue
 }
 for col := 0; col < 4; col++ {
 if col == deleteCol {
 continue
 }
 m3.Elems[idx] = m1.Get(row, col)
 idx++
 }
 }
 return m3
}

middle = mat.NewSphere()
middle.SetTransform(mat.Translate(-0.5, 0.75, 0.5))

glassMtrl := mat.NewMaterial(mat.NewColor(0.8, 0.8, 0.9), 0, 0.2, 0.9, 300)
glassMtrl.Transparency = 1.0
glassMtrl.RefractiveIndex = 1.57

middle.SetMaterial(glassMtrl)

w.Objects = append(w.Objects, middle)

CACHING THE INVERSE

• The Inverse transformation matrix of each primitive is used in every ray / object
intersection test

• Since our geometry and camera is static per frame rendered, it turns out we can pre-
compute and store the Inverse matrix for each primitive once during scene setup.

func (s *Sphere) SetTransform(translation Mat4x4) {
 s.Transform = Multiply(s.Transform, translation)
 s.Inverse = Inverse(s.Transform)
}

CACHING THE INVERSE

• The Inverse transformation matrix of each primitive is used in every ray / object
intersection test

• Since our geometry and camera is static per frame rendered, it turns out we can pre-
compute and store the Inverse matrix for each primitive once during scene setup.

func (s *Sphere) SetTransform(translation Mat4x4) {
 s.Transform = Multiply(s.Transform, translation)
 s.Inverse = Inverse(s.Transform)
}

type Sphere struct {
 Id int64
 Transform Mat4x4
 Inverse Mat4x4
 Material Material
}

BEST OPTIMIZATION EVER!

INVERSE CACHING OUTCOME

• Single-threaded went from 3m 14s to
10.9s

• Multi-threaded went from 1m30s to
4.2s

• Allocations went from 3.9 billion to
180 million!

• From 154 GB to 5.9 GB

NOT DONE YET!

STEP 3 - ELIMINATE ALLOCATIONS

• Still room for improvement
• Time for a new pprof check of allocs

to the heap

ELIMINATE ALLOCATIONS

• Start pre-allocating memory
whereever possible and re-use:
- Vectors and matrices being used in

intermediate calculations
- Intersection lists (slices)
- …

• Sometimes not trivial

RENDER CONTEXT PER WORKER

• Each ”render context” needs to
have it’s own copy of world
objects and pre-allocated lists
and storage for recurring
computations

return Context{
 world: world,
 total: 0,

 // allocate memory
 pointInView: mat.NewPoint(0, 0, -1.0),
 pixel: mat.NewColor(0, 0, 0),
 origin: mat.NewPoint(0, 0, 0),
 direction: mat.NewVector(0, 0, 0),
 subVec: mat.NewVector(0, 0, 0),

 // allocate ray
 firstRay: mat.NewRay(mat.NewPoint(0, 0, 0),
 mat.NewVector(0, 0, 0)),

 // stack for shading
 cStack: cStack,
}

RE-USE SLICE MEMORY

• Re-slice used slices rather than setting them to nil
• Preserves memory

bigslice := make([]int, 200000)
for i := 0; i < 1000; i++ {
 bigslice = nil
 for i := 0; i < 200000; i++ {
 bigslice = append(bigslice, rand.Intn(1000000))
 }
 if i % 1000 == 0 {
 fmt.Printf("Data len: %v\n", len(bigslice))
 }
}

RE-USE SLICE MEMORY

RE-USE SLICE MEMORY

RE-USE SLICE MEMORY BY [:0]

• reslice by slice = slice[:0]

bigslice := make([]int, 200000)
for i := 0; i < 1000; i++ {
 bigslice = bigslice[:0]
 for i := 0; i < 200000; i++ {
 bigslice = append(bigslice, rand.Intn(1000000))
 }
 if i % 1000 == 0 {
 fmt.Printf("Data len: %v\n", len(bigslice))
 }
}

RE-SLICE MEMORY USING [:0]

RE-SLICE MEMORY USING [:0]

MORE EFFICIENT C-STYLE RETURNS

• Pre-allocate memory and pass function results through a parameter passed as pointer
instead of allocating locally

func MultiplyMatrixByTuple(m1 Matrix4x4, t Tuple4, out *Tuple4) {
 for row := 0; row < 4; row++ {
 out.Elems[row] = (m1.Get(row, 0) * t.Get(0)) +
 (m1.Get(row, 1) * t.Get(1)) +
 (m1.Get(row, 2) * t.Get(2)) +
 (m1.Get(row, 3) * t.Get(3))
 }
}

// Somewhere else
mat.MultiplyMatrixByTuple(rc.camera.Inverse, rc.pointInView, &rc.pixel)
mat.MultiplyMatrixByTuple(rc.camera.Inverse, originPoint, &rc.origin)

func MultiplyMatrixByTuple(m1 Matrix4x4, t Tuple4) Tuple4 {
 t1 := NewTuple4(make([]float64, 4))
 for row := 0; row < 4; row++ {
 t1.Elems[row] = (m1.Get(row, 0) * t.Get(0)) +
 (m1.Get(row, 1) * t.Get(1)) +
 (m1.Get(row, 2) * t.Get(2)) +
 (m1.Get(row, 3) * t.Get(3))
 }
 return t1
}

return Context{
 // omitted for brevity

 // allocate memory
 pointInView: mat.NewPoint(0, 0, -1.0),
 pixel: mat.NewColor(0, 0, 0),
 origin: mat.NewPoint(0, 0, 0),

}

REFACTORING OUTCOME

• Continued refactoring and optimization resulted in:
- Multi-threaded render: 4.2 -> 1.9 seconds
- Allocation number: 180 million -> 33 million
» 12700 -> 100 allocs per pixel

- Memory allocated: 5.9 GB -> 1.31 GB
• However…
- More complex code base
- Multi-threading requires careful access to shared data

or context-exclusive copies

ONE MORE OPTIMIZATION…

STEP 4 - LAST OPTIMIZATION

• After adding caching and reducing allocations significantly performance was quite
good.

• Time to CPU profile again…

WHAT?!?

CONGESTION?

• Something slightly weird…
- runtime usleep: 62.3% CPU

time?!?!
» /debug/pprof/block

CONGESTION?

• Something slightly weird…
- runtime usleep: 62.3% CPU

time?!?!
» /debug/pprof/block
» /debug/pprof/mutex

CONGESTION

• Renderer is based on the worker-pool pattern
- 8 workers having their own rendering context / memory

• One job per pixel
- 1920x1080 -> ~2 million jobs passed to either of the 8

workers through an unbuffered channel
- 16.4 seconds

• One job per line
- 1920x1080 -> 1080 jobs passed
- 14.7 seconds

BLOCKS - PASS BY LINE

REFACTORING CONGESTION OUTCOME

• Multi-threaded render: 1.9 -> 1.6 seconds
• However, 8 threads vs 1 thread is still just 2.7x faster, so

there’s definitely a lot more bottlenecks to be found
- slice.Sort is run on every intersection which allocates

memory internally
- A lot of basic vector / matrix ops still allocating

memory
- Experiment with GOGC to run GC less often
- I’m considering a total rewrite ;)

A FINAL TRICK -
LIVE CODING -

WITH DEMO!

COMPARING PPROFS

• Pprof supports loading two pprof files in order to compare them
• go tool pprof -diff_base pixel-render.pb.gz line-render.pb.gz

COMPARING PPROFS

SUMMARY

LESSONS LEARNED

• Even though Go is garbage collected, you need to think on how and when you're
allocating memory if the code you’re writing is performance critical.
- That said:
» Avoid premature optimization!!

• Always try to allocate memory that does not escape to the heap
- go build -gcflags ’-m’ <path> to perform escape analysis (another topic…)

• Goroutines and channels are cheap…
- But not free!

• … and so on …

SUMMARY

• Writing a ray-tracer is great fun
- (with a good book to hold your hand while doing it!)

• Optimizing it was maybe even more fun!
- (since I got to dive into go profiling in greater depth than ever before)

• Renderer could use a whole bunch of improvements
- Or just use Blender… ;)

• The journey is the reward!

SUMMARY

• Do not give in to premature optimization!!!
- (unless <insert reason>)

• go pprof is an invaluable tool for profiling running go code without having to
manually log/measure/summarize or polluting the code base
- With a quite low (1-3%) performance hit, some people even run it on their

production servers!
• Powerful, but can be quite difficult to decipher the semantics of the output
- I personally prefer the viz graphs

THANKS!

