
The Ubiquitous nature
of Javascript

Stephen White - 20200220
Göteborg React JS Meetup

Agenda
• Inspiration

• Dream Stack

• DX

• Backend for the Frontend - Serverless Framework

• Polly Dictate - landscape and code

• Demo

Inspiration

• The 60Fps syndrome- Yehuda Katz

• AWS Certification

• Rick and Morty

The 60fps syndrome

The 60fps syndrome

• BE - Non Functional Requirements

• FE - Functional Requirements

The 60fps syndrome
Different Concerns

• BE - Non Functional Requirements

• Accessability

• Availability

• Durability

• Performance

• Resilience

• Scalability

The 60fps syndrome
Backend

• FE - Non and Functional Requirements

• Accessibility

• Availability

• Durability

• Performance

• Resilience

• Scalability

• Get shit done…

The 60fps syndrome
Frontend

AWS Developer Cert

Two Brothers in a Van

https://www.youtube.com/watch?v=Irc_dew1eYw

Hindrance to 60fps

The Backend!

API’s - Rest vs GQL

BE Strikes back

Context Switching

The Process!

Technical Dept

If only we could use JS in
the BE

Dream Stack

DX

DX

DX

Frontend Patterns

Backend Patterns

Almost the same

Although where did all those
AWS Services come from!!

Serverless and JS gives us

• DX

• Minimal Context switch

• Tooling

• Code as Infrastructure

• Patterns and Conventions

• Functional Programming

Move towards Cross
Functional Teams

Serverless Framework, what
it offers

• JS is king!

• JVM based languages, Kotlin, Java … Scala

• GO

• Rust

• Code as Infrastructure

• Plugin Model

• Offline

• Webpack - hot reload

• SNS / SQS - Offline!!

• ….

• Deploy to multiple clouds (Although most support for AWS)

Lambda

export const get = async event => await ns.get(event.path.id)

Thin as possible
Service

Most of your code
Notes DBNotes DB

Code As Infrastructure

 notes-get:
 handler: src/notes.get
 environment:
 TABLE: ${self:custom.pollynotesDb}
 events:
 - http:
 path: notes/{id}
 method: GET
 integration: lambda
 cors: true
 request:
 parameters:
 paths:
 id: true
 authorizer: aws_iam

GetNote
API GW

/notes/{id}
GET

Test

 it("can create a note", async () => {
 const note = await api.post({ note: "the cat on the mat" });
 expect(note.note).toEqual("the cat on the mat");
 await api.delete(note.id);
 });

Local Remote

Demo

Polly Dictate

Dictate

Mp3 Bucket

Notes DBNotes DBAPI GW GraphQL

IOS

Android

Web

Cognito

Subscriptions

Publish

Amazon Polly

Dynamo StreamWeb Socket

Expo - deploy

Dev App Prod AppExpo App

Channels Default Develop Production

App.json
"expo": {
 "bundleIdentifier": “polly-native-
expo”,
 "updates": {
 “enabled”: true
 "checkAutomatically": true
 }
}

expo publish --release-channel <channelName>

App.json
"expo": {
 "bundleIdentifier": “polly-native-dev”,
 "updates": {
 “enabled”: true
 "checkAutomatically": true
 }
}

App.json
"expo": {
 "bundleIdentifier": “polly-native”,
 "updates": {
 “enabled”: false
 "checkAutomatically": false
 }
}

Conclusions
• Two Bros

• The backend, move away from functional teams to cross functional with a common language… JS

• API’s Rest vs GQL, let the api be driven by the needs of the client not by what the BE have time to
provide. Make it flexible and let it evolve.

• BE Strikes back! Talk the same language have the same concerns (i.e the customer)

• Context Switching - mitigated with the use of JS in all layers and the use of a decided
programming style, be it functional or OOP.

• The Process - with greater efficiency and productive, trust and empowerment of the developer
follows, less trust generally means more process, more trust infers that the devs can focus on
getting stuff done!

• Technical Dept - will decrease if more devs take responsibility for the code base. With greater DX
devs have more time to fine tune and polish their code.

• JS in all levels!

Conclusions

• Two Bros - The Process

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

• https://agilemanifesto.org

Conclusions

• React Native

• gives a native experience.

• Web skills for native apps.

• Great community

• Modern standards

Demo List
• Show the app in IOS and Android Sims

• Show the Web App

• Run the BE locally

• Show GraphIQL

• Add a gql resolver

• SearchNotes

• Back to GraphiQL

Polly Dictate
CreateNote

UpdateNote

GetNote

ListNotes

RemoveNote

DictateMp3 Bucket

Notes DBNotes DB

API GW

GraphQL

IOS

Android

Web

Cognito

Enterprise
Damage

