
1

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 1
Copyright 2003, Callista Enterprise AB

Björn Beskow

Callista Enterprise AB

bjorn.beskow@callista.se

http://www.callista.se/enterprise

Unit Testing and Test Driven Design

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 2
Copyright 2003, Callista Enterprise AB

Unit Testing and Test Driven Design

o Target audience
˘ Developers, Designers, Architects, Project Managers and

Project Sponsors interested in lean and mean ways to
achieve good-enough quality without paying an excessive
price

o Objectives
˘ Provide an overview of Unit Testing, and how Designing

with Testability in mind changes your way of thinking

o Non-Objectives
˘ To say anything about Functional Testing, Performance

Testing, GUI Testing, …

2

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 3
Copyright 2003, Callista Enterprise AB

Agenda

o About Tests and Testing

o What is a Unit Test?

o Inside a Unit Test

o Test-First Design: How does Testability affect your

way of thinking?

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 4
Copyright 2003, Callista Enterprise AB

About Tests …

o Everybody knows they should, but few actually do

o “Why isn’t this tested before”?
˘ Because it has been too expensive, difficult, cumbersome

to test
˘ Because we have been too busy
˘ Because things have changed

3

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 5
Copyright 2003, Callista Enterprise AB

Absence of tests … Greetings from Hell!

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 6
Copyright 2003, Callista Enterprise AB

The Diabolical Challenge of Modern Software
Development

To rapidly complete large projects that are both research-

like and mission-critical in a turbulent business and

technology environment.
˘ Exciting Features
˘ Rapid delivery
˘ High quality
˘ High change
˘ Low cost

4

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 7
Copyright 2003, Callista Enterprise AB

OMG’s Six ’Best Practices’ for
Software Engineering

1. Develop software iteratively

2. Manage requirements

3. Use component-based architectures

4. Model software visually

5. Verify software quality continuously

6. Control changes

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 8
Copyright 2003, Callista Enterprise AB

1. Develop software iteratively

vs

Explore

EvaluateEnhance

Envision

5

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 9
Copyright 2003, Callista Enterprise AB

3. Use component-based architectures

o Using well-defined interfaces makes a system much

more resilient to change

o A component-based architecture enables projects to run

more efficiently and with lesser risk

«subsystem»
Product Catalog

«subsystem»
Product Availability

«subsystem»
Search

«subsystem»
Pricing

«subsystem»
Order Management

«subsystem»
Order Tracking

«subsystem»
User Profiles

«subsystem»
Campaigns

«subsystem»
Direct Mailing

«subsystem»
Business Intelligence

«subsystem»
Interactive Access

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 10
Copyright 2003, Callista Enterprise AB

5. Verify software quality continuously

o Quality: The characteristic identified by the following:
˘ satisfies or exceeds an agreed upon set of requirements,

and
˘ assessed using agreed upon measures and criteria, and
˘ produced using an agreed upon process

o Test every iteration – automate test!

6

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 11
Copyright 2003, Callista Enterprise AB

Refactoring challenges the Software Quality
Entropy!

o The device `Do it right the first time´ sends the wrong message to an

iterative project – make sure you do it right the last time!

o Refactoring is a systematic approach to improve the design and

quality of an existing system, without changing its external behaviour.

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 12
Copyright 2003, Callista Enterprise AB

Full Lifecycle Object Oriented Testing

o Requirements Testing
˘ Use-case scenario testing
˘ Prototype walkthroughs
˘ User Requirements reviews

o Analysis & Design Testing
˘ Model walkthroughs
˘ Prototype walkthroughs
˘ Peer reviews

o Code Testing
˘ Black-box testing
˘ White-box testing
˘ Boundary-value testing
˘ Class-integration testing
˘ Class testing
˘ Code reviews
˘ Coverage testing
˘ Regression testing

o System Testing
˘ Function testing
˘ Installation testing
˘ Stress testing
˘ Operations testing
˘ Support testing

o User Testing
˘ Alpha testing
˘ Beta testing
˘ Pilot testing
˘ User acceptance testing

7

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 13
Copyright 2003, Callista Enterprise AB

Gee, that sounds both difficult,
boring and expensive!

o Yes, all testing comes with a price.

o 0% defect rate is impossible, and perhaps not even

desirable?

but …

o If it can be built, it can also be tested!

o If it’s not worth testing, maybe it’s not even worth

building?

Lesson: Test cheap, test early, test often!

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 14
Copyright 2003, Callista Enterprise AB

Unit Tests

o Black-box or White-box test of a logical unit, which

verifies that the logical unit behaves correctly – honors

its contract.

8

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 15
Copyright 2003, Callista Enterprise AB

Smoke Tests

o A set of Unit Tests (which tests a set of logical units)

executed as a whole provides a way to perform a

Smoke Test: Turn it on, and make sure that it doesn’t

come smoke out of it!

o A relatively cheap way to see that the units “seems to

be working and fit together”, even though there are no

guarantees for its overall function (which requires

functional testing)

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 16
Copyright 2003, Callista Enterprise AB

What exactly is a Unit Test?

o A self-contained software module (typically a Class)

containing one or more test scenarios which tests a Unit

Under Test in isolation.

o Each test scenario is autonomous, and tests a separate

aspect of the Unit Under Test.

Unit Under Test
(UUT)

Test

creates

9

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 17
Copyright 2003, Callista Enterprise AB

Unit Test Example

 public interface Account {

 public void withdraw(double amount);

 public void deposit(double amount);

 public double balance();

 …

}

public class AccountTest extends TestCase {

 public void testWithdraw() {

 AccountImpl account = new AccountImpl(“1234-9999”, 2000);

 account.withdraw(300);

 assertEquals(account.balance(), 1700);

 }

 public void testWithdrawTooMuch() { … }

 …

}

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 18
Copyright 2003, Callista Enterprise AB

Desiderata for Unit Tests

o Easy to write a test class

o Easy to find test classes

o Easy to test different aspects of a contract

o Easy to maintain tests

o Easy to run tests

10

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 19
Copyright 2003, Callista Enterprise AB

XUnit: A Framework for Unit Tests

o www.junit.org

o www.csunit.org

o www.vbunit.org

o cppunit.sourceforge.net

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 20
Copyright 2003, Callista Enterprise AB

Test-Driven Design

Unit Tests may be written very early. In fact, they may even be

written before any production code exists:

1. Write a test that specifies a tiny bit of functionality

2. Ensure the test fails (you haven't built the functionality yet!)

3. Write the code necessary to make the test pass

There is a certain rhythm to it: Design a little – test a little –

code a little – design a little – test a little – code a little – ...

11

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 21
Copyright 2003, Callista Enterprise AB

Obvious Effects of Test-Driven Design

o Already automated tests, immediately useful for
˘ Integration tests
˘ Regression tests

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 22
Copyright 2003, Callista Enterprise AB

Not-so-obvious Effects of Test-Driven
Design

o Intentional Design of Interfaces
˘ Since the code in question is not written yet, we are free

to choose the interface that is most usable.

o Non-speculative Interfaces
˘ Interfaces provide the functionality which is just enough

for right now

o Documented requirements and intended usage
˘ The tests themselves provide immediately useful

documentation of the Interfaces

o Good OO Design: High Cohesion and Low Coupling
˘ If you have to write tests first, you'll devise ways of

minimizing dependencies in your system in order to write
your tests.

12

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 23
Copyright 2003, Callista Enterprise AB

Designing for Testability: Low Coupling

o Minimize dependencies between classes

o Only allow “closely related” classes to interact directly

FRIENDS

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 24
Copyright 2003, Callista Enterprise AB

Designing for Testability: Model-View-
Control

o User Interfaces are notoriously difficult to test

o Splitting a complex application into separate, cohesive

parts which separates presentation from application

logic allows testing the application logic in isolation

13

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 25
Copyright 2003, Callista Enterprise AB

So what exactly is a Unit?

o Class?

o Interface?

o Component?

o Sub-system?

o Whole system?

Pragmatics!

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 26
Copyright 2003, Callista Enterprise AB

Design properties and Design goals

For Units:

o Modularity

o High cohesion

o Low coupling

For Tests:

o Modularity

o Locality

Unit Under Test
(UUT)

Test

14

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 27
Copyright 2003, Callista Enterprise AB

But what about units that depend on
other units (with potential side effects)?

Unit Under Test
(UUT)

Test Dependee

o Different strategies possible:
˘ Create a real context
˘ Run in it’s natural context (In Container in the case of

J2EE or .NET)
˘ Create a synthetic context

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 28
Copyright 2003, Callista Enterprise AB

Create a real context

Unit Under Test
(UUT)

Test Dependee

«subsystem»
Product Catalog

«subsystem»
Product Availability

«subsystem»
Search

«subsystem»
Pricing

«subsystem»
Order Management

«subsystem»
Order Tracking

«subsystem»
User Profiles

«subsystem»
Campaigns

«subsystem»
Direct Mailing

«subsystem»
Business Intelligence

«subsystem»
Interactive Access

o Ok

o ?

15

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 29
Copyright 2003, Callista Enterprise AB

Run in context - Cactus

o jakarta.apache.org/cactus/

EJBTestEJB

Data Access

Object

Data Transfer

Object

Data

Dispatcher

Servlet

Application Server

Test Result

Browser

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 30
Copyright 2003, Callista Enterprise AB

Synthetic context – MockObjects

o Implements the same interface as the resource that it

represents

o Enables configuration of its behavior from outside (i.e.

from the test class, in order to achieve locality)

o Enables registering and verifying expectations on how

the resource is used

«interface»
Expectation

«abstract»
MockObject

«interface»
Verifiable

16

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 31
Copyright 2003, Callista Enterprise AB

Typical usage scenario for
Mock Objects in a TestCase

1. Instantiate mockobjects

2. Set up state in mockobjects, which govern their

behavior

3. Set up expectations on mock objects

4. Execute the method(s) on the Unit Under Test, using

the mockobjects as resources

5. Verify the results

6. Verify the expectations

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 32
Copyright 2003, Callista Enterprise AB

Example: A Mock database resource

EJB

«interface»
Data Access

Object

loadAccount
storeAccount

Data Transfer

Object

OracleDAOMockDAO

TestEJB

17

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 33
Copyright 2003, Callista Enterprise AB

Example (contd.)

public void testWithdraw() {

EJB ejb = new EJB();

MockDAO mockDAO = new MockDAO();

mockDAO.setupLoadAccount(new ValueObject(…));

mockDAO.setExpectedStoreAccount(new ValueObject(…));

mockDAO.setExpectedLoadAccountCalls(1);

mockDAO.setExpectedStoreAccountCalls(1);

ejb.setDAO(mockDAO);

int result = ejb.withdraw(…);

assertEquals(result, expectedResult);

mockDAO.verify();

}

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 34
Copyright 2003, Callista Enterprise AB

Designing for Testability :
Don’t Talk To Strangers

o If there are no strong reasons why two classes should

talk to each other directly, they shouldn’t!

Unit Under Test
(UUT)

Dependee

«interface»
Dependee

Unit Under Test
(UUT)

DependeeImpl

becomes

18

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 35
Copyright 2003, Callista Enterprise AB

Designing for Testability :
Law of Demeter

Any method should have limited knowledge about an

object structure.

public EJBBean() {

 …

 DAO dao = new DAO();

 …

}

becomes

public void setDAO(DAO dao) {

this.dao = dao;

}

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 36
Copyright 2003, Callista Enterprise AB

Bottom Line: Unit Testing and
Test-First Design is Infectious!

It’s always a bit painful to change your habits, but once

you’ve been there, you’re stuck!

o Enables truly iterative projects

o Improves your design

o Doesn’t cost your project a fortune

o Is even fun!

Enables you to test cheap, to test early, and to test

often!

19

CADEC 2003-01-29, Unit Testing and Test Driven Design, Slide 37
Copyright 2003, Callista Enterprise AB

Questions?

