What can enterprise mash-up
technologies do for your?

Practical learning by looking at WebSphere sMash

Johan Eltes
johan.eltes@callistaenterprise.se
www.callistaenterprise.se

CALLISTA



My wake-up call

e Customer requirements:

— Web application to search for contact information on employees
and locations of the enterprises sites located in the enterprise
LDAP —based directory

How would an Enterprise Java Architect approach this?
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Enterprise Java Architect Approach

e Follow the prescribed reference architecture

— Presented at last years Cadec

Enterprise
Archive

(EAR)

Business Component
(Core Conf Mgmnt Structure)

Composites
Composite Application (For re-use in composite

(WAR) applications)
(JAR)

Web Portlet




The customer proposed a different approach

e Supplementary requirements clarified

— The information displayed in search result should be up-to-date
with yesterdays information in LDAP master (or better)

e Proposal

— Give every information object in LDAP (nhot structural nodes)
an HTTP URL that produces XML output

— Produce one - or as few as practically possible - HTML files with
all these URLs, so that our search engine can index them

— Use the search engine client to search for information in our
people directory and present the output of the selected URL

e Background

— The customer uses Websphere Omnifind to search-enable
enterprise content
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Some reflexions

e There are many generic tools made for the web
e Customers are used to the web architecture
e We do find information using Google

e The solution was “quick and dirty” but still produced and re-used
services in very short time and with very low risk

e Enterprise Java architects may need to extend their mind- and
tool-set...

Welcome to the new world of Enterprise Mash-ups!
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Cornerstones for Enterprise Mash-ups

e Solution Architecture
— Produce new web resources by consuming existing.
e Q&D(O) over Strategic & Engineered
— 90% Integration logic, 10% Core business logic
— Web concepts (REST services , browser scripting)
e Programming model
— Generic formats with open binding.
e Content before structure
— Agile, short roundtrips
e Solution Category
— Primarily for information consumption
— Situational applications
- Lifecycle

— Lifecycle not necessarily formal. Anyone depending of mash-up services is part
of the game. Web URLs usually stay sable for a couple of years...

e Tooling
— Even the tooling is a mash-up

e Scripting, Java, resource adapters, integration middleware...
CALLISTA



WebSphere sMash technology

e JVM-based application server used for developing and running mash-ups
e Ul development and re-use toolkit for JavaScript based on Dojo JavaScript

library
e Solid component management
— The product is componentized
— Solutions can be componentized
e Itis a very lightweight container
— bootstraps its features from an internet repository
— Installation: Download, unzip, start
— Initial size is 1.8 MB. Incrementally grows to 250 MB
e Itis a very agile environment
— Develop in the container
— Basically Zero restarts: edit, refresh, debug...
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RESTFul Services in Groovy

def onList() {
/[ Http GET to http://localhost:8080/resources
/I ' Writes a list of all resources to the response (XML or JSON)

}
def onCreate() {

/[ Hitp POST to http://localhost:8080/resources/registrations

/I Create new resource. Sets the location header of response to

I http://localhost:8080/resources/registrations/<id of new resource>
}

def onRetrieve() {
/[ Http GET to http://localhost:8080/resources/<id>
/[ Writes the requested resource to the response (XML or JSON)

}

def onUpdate() {
/[ Http PUT to http://localhost:8080/resources/<id>
/I No response

}

def onDelete() {
/[ Http DELETE to http://localhost:8080/resources/<id>
/I No response

} CALLISTA



Special support for Database Resources

e Very similar top Grails

e Builds on metadata and coding-by-convention

e Basically creating a RESTFul api on top of database tables

- {Dojo Grid + Detail Form also by convention
"fields": {

}

name": {
"label": "Namn",
"required": true,
"type": "string",
"description": "",
"default_value": "",
"max_length": 50

adec": {

"label": "Cadec",
"required": true,
"type": "boolean”,
"description": "",
"default_value": ™"

=)

Generates / Alters new database
Maps legacy

=

Zero Resource
Model: Access
using metadata
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Demo - ZRM

e Create New Application

e Add Resource Metadata (json format)
e Add initial data fixture
e Synchronize database

e Create Groovy handler for resource

e Use RESTFul api from browser

— http://localhost:8080/resources/reqistrations/1

e Query-by-convention also available

— http://localhost:8080/resources/registrations?email __endswith
—=company2.com
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ZRM — Model-driven Ul

e Generate Ul descriptor from ZRM model
— Adds layout attributes, but still metadata on JSON format
e Descriptor used by Ul builder

— For CRUD user interfaces the “Rails” way, but with services
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Coding by convention — Restless REST

e How to call a ZRM RESTFul service from a Groovy Mash-up script?

| Groovy
Mashup

Type registrations = TypeCollection.retrieve(‘reqistrations') | Resource

\
List<Member> allRegistrations = registrations.list()
g

allRegistrations.each { registration -> printin registration.email}
List<Member> registrationsFromAcme = registrations.list(email _endswith: ‘acme.com’)

Member newRegstration = registrations.create(name:‘Kalle', company:’Acme’,...)
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Flows — creating mash-ups graphically

e New email events should trigger creation of new resources
— Use the POP3-kicker
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Sample mash-up flow

REST-based mash-
up service (JSON)
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Client-side mash-ups in sMash

IWidgets

Portal in the client

Same idea as collaborating
portlets

Self-contained and packaged
components

Interacts with server resources
via ajax/JSON

Interacts with other iwidgets via
client-side events

Multiple iWidgets composed and
linked in webpages

Would be like swing widgets,
unless...

Hello Kalle

Page

Subscribe

Name :

%

| Kalle

Publish
I
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Supported by a solid multi-layer component
model

e The sMash Component model sMash-komponent
allows any application to be re-
used as a component

e And we yield new services as we go ; \

L

\\
sMash-komponey/ sMash-ko\ngnt
iIWidget iIWidget
/ E»/
| e Resource Resource |
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Component and re-use in sMash

All components have the same internal layout

Dependencies are managed by lvory

Composed application
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Summary sMash

e Developed by IBM in a way very much unlike IBM

e Full access to Project Zero development process and development
products

e Based on what seems to be the comming "main stream”
technologies for "Web 2.0” and Cloud Computing

e A strange mix of high-level and techie (full http protocol access)

e A slick seemless environment for small teams and situational
applications

e Lack of momentum — very small community
e (Coding in the browser?

— Great debugger, no intellicense
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What about Open Source?

e Few products that define them selfs as Mash-up infrastructure
e WSO2 Mashup Server

— Limited to JavaScript

— JavasScript lacks libraries for server side integration

— Primary focus is on accessing and publishing WebServices with
JavaScript

e Several Mash-up systems in the cloud

— Yahoo Pipes probably best known
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Mash-up development skillset

e REST architecture (Resource model -> HTTP)

e JavaScript and JavaScript widget frameworks

e Server side dynamic languages (Groovy, PHP)

e Major REST-based application protocols (ATOM, RSS)
e \Web Security
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Conclusions

e WebSphere Smash )  SOAsaurus

— A tailored infrastructure boosts RESTFul development

— It represents a balanced model for agility and engineering

— Agility and integration at this level has a price: Vendor lock-in (OS

may catch-up)
e WSO02 Mashup Server
e General — Enterprise Mashups
— Q&D(O) — Probably!

— Intersects with integration, process and information management

middleware

— Unique in its dedication to the architecture of the web
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