What can enterprise mash-up
technologies do for your?

Practical learning by looking at WebSphere sMash

Johan Eltes
johan.eltes@callistaenterprise.se
www.callistaenterprise.se

CALLISTA

My wake-up call

e Customer requirements:

— Web application to search for contact information on employees
and locations of the enterprises sites located in the enterprise
LDAP —based directory

How would an Enterprise Java Architect approach this?

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Enterprise Java Architect Approach

e Follow the prescribed reference architecture

— Presented at last years Cadec

Enterprise
Archive

(EAR)

Business Component
(Core Conf Mgmnt Structure)

Composites
Composite Application (For re-use in composite

(WAR) applications)
(JAR)

Web Portlet

The customer proposed a different approach

e Supplementary requirements clarified

— The information displayed in search result should be up-to-date
with yesterdays information in LDAP master (or better)

e Proposal

— Give every information object in LDAP (nhot structural nodes)
an HTTP URL that produces XML output

— Produce one - or as few as practically possible - HTML files with
all these URLs, so that our search engine can index them

— Use the search engine client to search for information in our
people directory and present the output of the selected URL

e Background

— The customer uses Websphere Omnifind to search-enable
enterprise content

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Some reflexions

e There are many generic tools made for the web
e Customers are used to the web architecture
e We do find information using Google

e The solution was “quick and dirty” but still produced and re-used
services in very short time and with very low risk

e Enterprise Java architects may need to extend their mind- and
tool-set...

Welcome to the new world of Enterprise Mash-ups!

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Cornerstones for Enterprise Mash-ups

e Solution Architecture
— Produce new web resources by consuming existing.
e Q&D(O) over Strategic & Engineered
— 90% Integration logic, 10% Core business logic
— Web concepts (REST services , browser scripting)
e Programming model
— Generic formats with open binding.
e Content before structure
— Agile, short roundtrips
e Solution Category
— Primarily for information consumption
— Situational applications
- Lifecycle

— Lifecycle not necessarily formal. Anyone depending of mash-up services is part
of the game. Web URLs usually stay sable for a couple of years...

e Tooling
— Even the tooling is a mash-up

e Scripting, Java, resource adapters, integration middleware...
CALLISTA

WebSphere sMash technology

e JVM-based application server used for developing and running mash-ups
e Ul development and re-use toolkit for JavaScript based on Dojo JavaScript

library
e Solid component management
— The product is componentized
— Solutions can be componentized
e Itis a very lightweight container
— bootstraps its features from an internet repository
— Installation: Download, unzip, start
— Initial size is 1.8 MB. Incrementally grows to 250 MB
e Itis a very agile environment
— Develop in the container
— Basically Zero restarts: edit, refresh, debug...

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB

CALLISTA

JavaScript mash-
up client

JavaScript,
Dojo-baserat
ramverk

Assemble

Flow, Groovy,

t-side
PHP, Groovy

Produce HTML REST-based mash-up

-ups

_Templates

r-side

-
Groovy, PHP, h-ups

Java

\

Accessed by
Connectors and
Kickers (inbound

VBRATN

with ajax from service (JSON)
- =TT N
_____ search-
~RUD services
interface :
|
1 \4
Legacy Existing databases
~] with - with JDBC access
J JMS L

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB

events)

TFul
ices

CALLISTA

RESTFul Services in Groovy

def onList() {
/[Http GET to http://localhost:8080/resources
/I ' Writes a list of all resources to the response (XML or JSON)

}
def onCreate() {

/[Hitp POST to http://localhost:8080/resources/registrations

/I Create new resource. Sets the location header of response to

I http://localhost:8080/resources/registrations/<id of new resource>
}

def onRetrieve() {
/[Http GET to http://localhost:8080/resources/<id>
/[Writes the requested resource to the response (XML or JSON)

}

def onUpdate() {
/[Http PUT to http://localhost:8080/resources/<id>
/I No response

}

def onDelete() {
/[Http DELETE to http://localhost:8080/resources/<id>
/I No response

} CALLISTA

Special support for Database Resources

e Very similar top Grails

e Builds on metadata and coding-by-convention

e Basically creating a RESTFul api on top of database tables

- {Dojo Grid + Detail Form also by convention
"fields": {

}

name": {
"label": "Namn",
"required": true,
"type": "string",
"description": "",
"default_value": "",
"max_length": 50

adec": {

"label": "Cadec",
"required": true,
"type": "boolean”,
"description": "",
"default_value": ™"

=)

Generates / Alters new database
Maps legacy

=

Zero Resource
Model: Access
using metadata

CALLISTA

Demo - ZRM

e Create New Application

e Add Resource Metadata (json format)
e Add initial data fixture
e Synchronize database

e Create Groovy handler for resource

e Use RESTFul api from browser

— http://localhost:8080/resources/reqistrations/1

e Query-by-convention also available

— http://localhost:8080/resources/registrations?email __endswith
—=company2.com

CALLISTA

ZRM — Model-driven Ul

e Generate Ul descriptor from ZRM model
— Adds layout attributes, but still metadata on JSON format
e Descriptor used by Ul builder

— For CRUD user interfaces the “Rails” way, but with services

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Coding by convention — Restless REST

e How to call a ZRM RESTFul service from a Groovy Mash-up script?

| Groovy
Mashup

Type registrations = TypeCollection.retrieve(‘reqistrations') | Resource

\
List<Member> allRegistrations = registrations.list()
g

allRegistrations.each { registration -> printin registration.email}
List<Member> registrationsFromAcme = registrations.list(email _endswith: ‘acme.com’)

Member newRegstration = registrations.create(name:‘Kalle', company:’Acme’,...)

CALLISTA

Flows — creating mash-ups graphically

e New email events should trigger creation of new resources
— Use the POP3-kicker

Cadec-registrering

Jag anmdler mig till...

rrrrrrrr

ot
Jahar

Faretag
Callistao

Epost-adress
johan.eltezdcal lizstoenterprize.ze

N —— Triggers mash-up flow

~N\

sMash Email-kicker

CALLISTA

Sample mash-up flow

REST-based mash-
up service (JSON)

receivelMailMessa BuildRegistratio
CRUD
Resource
i Mail- Database
~—~] box —
PostToRecource L

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Client-side mash-ups in sMash

IWidgets

Portal in the client

Same idea as collaborating
portlets

Self-contained and packaged
components

Interacts with server resources
via ajax/JSON

Interacts with other iwidgets via
client-side events

Multiple iWidgets composed and
linked in webpages

Would be like swing widgets,
unless...

Hello Kalle

Page

Subscribe

Name :

%

| Kalle

Publish
I

CALLISTA

Supported by a solid multi-layer component
model

e The sMash Component model sMash-komponent
allows any application to be re-
used as a component

e And we yield new services as we go ; \

L

\\
sMash-komponey/ sMash-ko\ngnt
iIWidget iIWidget
/ E»/
| e Resource Resource |

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Component and re-use in sMash

All components have the same internal layout

Dependencies are managed by lvory

Composed application

+

+

+

F=] app

5 emors
|':| models

] resources

| ParseRegistrationEmail.groowy ({ 1
[T

http://localhost:8080/ParseReqistration

1 inherits 2 that inherits 3
Just like a classloader, but far all resources

—_—_—— ———t—_—e—e—_—_e—_—_e—_e—_e—_ee—_ee—_ e—_ e—_ee—_ ee—_ e e e e e e e e e e ——— —

| ParseRegistrationEmail .groowy [2

= app
] emors
|:| models

] resources

4

4

4

1
0
o

i

Summary sMash

e Developed by IBM in a way very much unlike IBM

e Full access to Project Zero development process and development
products

e Based on what seems to be the comming "main stream”
technologies for "Web 2.0” and Cloud Computing

e A strange mix of high-level and techie (full http protocol access)

e A slick seemless environment for small teams and situational
applications

e Lack of momentum — very small community
e (Coding in the browser?

— Great debugger, no intellicense

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

What about Open Source?

e Few products that define them selfs as Mash-up infrastructure
e WSO2 Mashup Server

— Limited to JavaScript

— JavasScript lacks libraries for server side integration

— Primary focus is on accessing and publishing WebServices with
JavaScript

e Several Mash-up systems in the cloud

— Yahoo Pipes probably best known

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Mash-up development skillset

e REST architecture (Resource model -> HTTP)

e JavaScript and JavaScript widget frameworks

e Server side dynamic languages (Groovy, PHP)

e Major REST-based application protocols (ATOM, RSS)
e \Web Security

Cadec 2009 - Mash-ups, Slide 2 Copyright 2009, Callista Enterprise AB
CALLISTA

Conclusions

e WebSphere Smash) SOAsaurus

— A tailored infrastructure boosts RESTFul development

— It represents a balanced model for agility and engineering

— Agility and integration at this level has a price: Vendor lock-in (OS

may catch-up)
e WSO02 Mashup Server
e General — Enterprise Mashups
— Q&D(O) — Probably!

— Intersects with integration, process and information management

middleware

— Unique in its dedication to the architecture of the web

CALLISTA

