
Terracotta

Simpler way to availability, scalability and performance  

Pär Wenåker
par.wenaker@callistaenterprise.se

www.callistaenterprise.se



AgendaAgenda

• Background to availability, scalability and performance

• What is Terracotta?

• How does it work?

• Use-cases for Terracotta 

Terracotta, Slide 2
© Copyright 2009, Callista Enterprise AB



TerracottaTerracotta

• www.terracotta.org

• Open Source since December 2006. 

• Distributed under the Terracotta Public License that is based on 
the Mozilla Public License 1.1

• Sponsored by Terracotta Inc.

Terracotta, Slide 3
© Copyright 2009, Callista Enterprise AB



Java Enterprise System Setup ExampleJava Enterprise System Setup Example

Application servers

PresentationState

StateNetwork

Presentation

Business

Persistence

State

State

DB
Network

LB

PresentationSession affinity
Sticky session State

State

Business

Persistence

Sticky session

Web-service

Terracotta, Slide 4
© Copyright 2009, Callista Enterprise AB



How do we secure these properties?How do we secure these properties?

• Availability

– The proportion of time that the system is in a functionall 
condition.

• Scalability

– The ability of a system to handle a bigger workload when more 
resources are made available to the systemresources are made available to the system

• Horizontal vs. Vertical scalability

• Performance• Performance

– How fast a system can execute a specific task it is given.

Terracotta, Slide 5
© Copyright 2009, Callista Enterprise AB



AvailabilityAvailability

We have two servers to get good availability but…

• If one of the servers goes down we will loose the HTTP-sessions in 
that server.

• One HTTP-session = One shopping basket = One Order = Money!

h b l l bl• The web service is not always available.

• The database is not always available.
Application servers

DB
Networ

k
L
B

Presentation

Business

Persistence

P t ti

Web-service

Presentation

Business

Persistence

Terracotta, Slide 6
© Copyright 2009, Callista Enterprise AB



Scalability

• With increased load on the application servers the load on the 

Scalability

database and web-service will increase. 

• The database and web-service will not be able to handle the 
i d l dincreased load.

• Scaling up the database can be expensive.

U d i

Cost

Unused capacity

Cost

Required Networ L

Application servers

Presentation

Business

Persistence

C i

Required
Capacity

Web-service

DBk B
Presentation

Business

Persistence

Terracotta, Slide 7
© Copyright 2009, Callista Enterprise AB

Capacity Web service



Scalability (cont.)Scalability (cont.)

To abstract the database away using an ORM is a beautiful thought, but…

• The ORM invites to save all kind of state in the database.

– Conversational

– Data that is built up in pieces over time.

– Throw-away-data

• We are tormenting our database…

Networ L

Application servers

Presentation

Business

Persistence

Web-service

DBk B
Presentation

Business

Persistence

Terracotta, Slide 8
© Copyright 2009, Callista Enterprise AB

Web service



PerformancePerformance

• Some database interaction will take long time and the system will 
be perceived as slow.

• The OR-mapping might generate the 1+n roundtrip problem.

• The external web-service might slow down under heavy load.

Nätver L

Applikationsservrar

Presentation

Affärslogik

Persistens

Web-service

DBk B

Presentation

Affärslogik

Persistens

Terracotta, Slide 9
© Copyright 2009, Callista Enterprise AB

Web service



StateState

• All these properties relate to how we handle state!p p

Terracotta, Slide 10
© Copyright 2009, Callista Enterprise AB



Traditional solutionTraditional solution

• Availability -> Session replication

• Performance/Scalability -> Caching

Presentation

Business

C
ach

S

DB
Network

LB
Persistence

he
Presentation

Business

C
ache

S
Web Service

Persistence

e

Terracotta, Slide 11
© Copyright 2009, Callista Enterprise AB



Challenges with session replicationChallenges with session replication

• How do we do the replication? There is no standard way.

– We could serialize the session to the database at each HTTP-
request.

– We could replicate over the network.

• Memory demands on the servers will increase in order to hold all 
the sessionsthe sessions.

• The web application has to be written for distribution.

– Minimal session/setAttribute/invalidate etcMinimal session/setAttribute/invalidate etc.

Terracotta, Slide 12
© Copyright 2009, Callista Enterprise AB



Challenges with cachingChallenges with caching

• The cache should be up-to-date.

– Meaning is often depending on the application.

• Do we require coherence between application servers? 

• If the cache is non-persistent it can only hold “mirrored” data.

• Consumes memory.

• Complicated to implement yourself.

• Might be complicated to configure and tune.

Terracotta, Slide 13
© Copyright 2009, Callista Enterprise AB



What is Terracotta?What is Terracotta?

Terracotta offers:

• A coherent, distributed and persistent JVM heap.

– Java objects created on the heap are available in all JVMs.

– Objects survive a JVM restart.

– Object identity is preserved between JVMs (no copies!)

– The heap can spill and does not have to stay in memory, to help avoid 

OOME.

Th  h  f ll  th   d th d d l f J• The heap follows the memory and thread model of Java.

– Java objects have coherent state between JVMs.

Threads in different JVMs interact just like threads in the same JVM– Threads in different JVMs interact just like threads in the same JVM.

• Requires no specific Java APIs.

• Integrates with other Java frameworks

Terracotta, Slide 14
© Copyright 2009, Callista Enterprise AB

• Integrates with other Java frameworks.



Network Attached Storage (NAS)Network Attached Storage (NAS)

Terracotta, Slide 15
© Copyright 2009, Callista Enterprise AB



Network Attached Memory (NAM)Network Attached Memory (NAM)

TC
ServerPresentation Server 
Grid

TC Cli t

Presentation

Business

Persistence

State

DB
Network

LB
JVM

TC Client

St t

Presentation

Business

Persistence

State

Web ServiceJVM
TC Client

Terracotta, Slide 16
© Copyright 2009, Callista Enterprise AB



TerracottaTerracotta

• Terracotta server (100% Java)

– Can be configured in HA mode (active-passive). 

– Can be configured to persist all state on disk.

– Handles distributed object, memory and locks.

• Terracotta clients

– Is loaded into the JVM at boot time.

– Instruments specified Java classes with cluster behaviour.

– Automatically connects to the Terracotta server at boot time.

– Can be started with specific wrapper script (dso-java.sh).

Terracotta, Slide 17
© Copyright 2009, Callista Enterprise AB



Demo: Terracotta HelloWorldDemo: Terracotta HelloWorld

public class HelloWorld {
private static int counter;p

public static void main(String [] args) {
System.out.println("Hello world, counter=" + counter++);

}
}

Terracotta, Slide 18
© Copyright 2009, Callista Enterprise AB



How does it work?How does it work?

Terracotta, Slide 19
© Copyright 2009, Callista Enterprise AB



How does it work?

JVM

How does it work?

JVM

TC-Grid

TC-Server TC-Server

Disk Disk

Terracotta, Slide 20
© Copyright 2009, Callista Enterprise AB



How does it work?How does it work?

JVM JVM JVMJVM JVM JVM

TC-Grid

TC-Server TC-Server

Disk Disk

Terracotta, Slide 21
© Copyright 2009, Callista Enterprise AB



How do you do it?How do you do it?

• Define root objects in your Java classes and instrument the classes 
that are to be clustered.

• All objects reachable from a root are clustered.

Rot

Terracotta, Slide 22
© Copyright 2009, Callista Enterprise AB



Terracotta HelloWorld (configuration)Terracotta HelloWorld (configuration)

<dso>
<instrumented-classes>

Instrumentation
<instrumented classes>

<include>
<class-expression>HelloWorld</class-expression>

</include>
</instrumented-classes> R t bj t</instrumented classes>
<roots>

<root>
<field-name>HelloWorld.counter</field-name>
<root-name>counter</root-name>

Root object

<root name>counter</root name>
</root>

</roots>
<locks>

<autolock auto-synchronized="false">

Lock

<autolock auto synchronized false >
<method-expression>* HelloWorld.main(..)</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks></locks>

</dso>

Terracotta, Slide 23
© Copyright 2009, Callista Enterprise AB



Demo: Bouncing BallDemo: Bouncing Ball

• http://leepoint.net/notes-
java/examples/animation/40BouncingBall/bouncingball.html

Terracotta, Slide 24
© Copyright 2009, Callista Enterprise AB



Use cases for TerracottaUse cases for Terracotta

• Distributed caching (HashMap, EHCache)

• Session Replication (Out-of-the-box). 

• Offload the database.

– Handle objects that does not have to be stored in the database.

• Simple messaging (LinkedBlockingQueue). 

• Workload partitioning.

Terracotta, Slide 25
© Copyright 2009, Callista Enterprise AB



Demo: Simple Messaging (Writer)Demo: Simple Messaging (Writer)

import java.util.concurrent.*;

import static java.lang.System.*;

public class Writer {public class Writer {
static final BlockingQueue<String> queue = 

new LinkedBlockingQueue<String>(5);

public static void main(String [] args) throws Exception {  
out.println("Writer started...");
for(int i = 0; i < 10 ; i++){

queue put("msg-"+i);queue.put( msg +i);
out.println("Written msg-"+i);

}
queue.put("end");
out.println("Writer done");

}
}

Terracotta, Slide 26
© Copyright 2009, Callista Enterprise AB



Demo: Simple Messaging (Reader)Demo: Simple Messaging (Reader)

import java.util.concurrent.*;

import static java.lang.System.*;

public class Reader {public class Reader {
static final BlockingQueue<String> queue = 

new LinkedBlockingQueue<String>(5);

public static void main(String [] args) throws Exception {
out.println("Reader started...");
boolean end = false;
while(!end) {while(!end) {

String msg = queue.take();
out.println("Reader received:" + msg);
if(msg.equals("end")) {end = true;}

}
out.println("Reader terminated!");

}
}

Terracotta, Slide 27
© Copyright 2009, Callista Enterprise AB

}



Demo: Simple Messaging (Config.)Demo: Simple Messaging (Config.)

<application>
d<dso>
<instrumented-classes>
<include>
<class-expression>Writer</class-expression>
/i l d</include>

<include>
<class-expression>Reader</class-expression>

</include>
</i t t d l ></instrumented-classes>
<roots>

<root>
<field-name>Writer.queue</field-name>
< t > </ t ><root-name>queue</root-name>

</root>
<root>
<field-name>Reader.queue</field-name>
< t > </ t ><root-name>queue</root-name>

</root>
</roots>

</dso>
</ li ti >

Terracotta, Slide 28
© Copyright 2009, Callista Enterprise AB

</application>



Demo: Session ReplicationDemo: Session Replication

Terracotta, Slide 29
© Copyright 2009, Callista Enterprise AB



Gnip Web 2.0 ESBGnip Web 2.0 ESB

• Gnip: http://www.gnipcentral.com/

• Blog: http://blog.gnipcentral.com

Terracotta, Slide 30
© Copyright 2009, Callista Enterprise AB



Gnip Web 2.0 ESBGnip Web 2.0 ESB

• 99.9%: the Gnip service has 99.9% up-time. 

• 10: ten Ec2 instances, of various sizes, run the core, redundant, message bus 

infrastructure. 

• 2.5 million unique activities are HTTP POSTed (pushed) into Gnip’s Publisher front 

door each day. 

2 8 illi  ti iti   HTTP POST d ( h d) t G i ’  C  b k d  h • 2.8 million activities are HTTP POSTed (pushed) out Gnip’s Consumer back door each 

day. 

• 2.4 million activities are HTTP GETed (polled) from Gnip’s Consumer back door each (p ) p

day. 

• $0: no money has been spent on framework licenses (unless you include “AWS”).

• >50.000 Terracotta transactions per second.

Terracotta, Slide 31
© Copyright 2009, Callista Enterprise AB



Conclusions and reflectionsConclusions and reflections

• Do we really need a RDBMS for this system?

• If we do, which objects needs to be stored in the database?

• We can build real object oriented domain models without 
constraints.

d b• Terracotta is no database!

• There is an integration module for Lucene/Compass.

• Terracotta is built to make the world simpler (for developer and 
operator).operator).

• Terracotta has been open sourced for two years.

Terracotta, Slide 32
© Copyright 2009, Callista Enterprise AB



There is no silver bulletThere is no silver bullet

Terracotta, Slide 33
© Copyright 2009, Callista Enterprise AB



Extra slidesExtra slides

Terracotta, Slide 34
© Copyright 2009, Callista Enterprise AB



Network Attached Memory (NAM)Network Attached Memory (NAM)

L1 C
acCore che L2 C

ac

Main
MemorycheL1 C

a

Memory

Core ache

JVM Terracotta Server Grid Database

Terracotta, Slide 35
© Copyright 2009, Callista Enterprise AB


