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• What is Terracotta?

• How does it work?

• Use-cases for Terracotta 
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TerracottaTerracotta

• www.terracotta.org

• Open Source since December 2006. 

• Distributed under the Terracotta Public License that is based on 
the Mozilla Public License 1.1

• Sponsored by Terracotta Inc.
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Java Enterprise System Setup ExampleJava Enterprise System Setup Example
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How do we secure these properties?How do we secure these properties?

• Availability

– The proportion of time that the system is in a functionall 
condition.

• Scalability

– The ability of a system to handle a bigger workload when more 
resources are made available to the systemresources are made available to the system

• Horizontal vs. Vertical scalability

• Performance• Performance

– How fast a system can execute a specific task it is given.
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AvailabilityAvailability

We have two servers to get good availability but…

• If one of the servers goes down we will loose the HTTP-sessions in 
that server.

• One HTTP-session = One shopping basket = One Order = Money!

h b l l bl• The web service is not always available.

• The database is not always available.
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Scalability

• With increased load on the application servers the load on the 

Scalability

database and web-service will increase. 

• The database and web-service will not be able to handle the 
i d l dincreased load.

• Scaling up the database can be expensive.
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Scalability (cont.)Scalability (cont.)

To abstract the database away using an ORM is a beautiful thought, but…

• The ORM invites to save all kind of state in the database.

– Conversational

– Data that is built up in pieces over time.

– Throw-away-data

• We are tormenting our database…
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PerformancePerformance

• Some database interaction will take long time and the system will 
be perceived as slow.

• The OR-mapping might generate the 1+n roundtrip problem.

• The external web-service might slow down under heavy load.
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StateState

• All these properties relate to how we handle state!p p
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Traditional solutionTraditional solution

• Availability -> Session replication

• Performance/Scalability -> Caching
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Challenges with session replicationChallenges with session replication

• How do we do the replication? There is no standard way.

– We could serialize the session to the database at each HTTP-
request.

– We could replicate over the network.

• Memory demands on the servers will increase in order to hold all 
the sessionsthe sessions.

• The web application has to be written for distribution.

– Minimal session/setAttribute/invalidate etcMinimal session/setAttribute/invalidate etc.
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Challenges with cachingChallenges with caching

• The cache should be up-to-date.

– Meaning is often depending on the application.

• Do we require coherence between application servers? 

• If the cache is non-persistent it can only hold “mirrored” data.

• Consumes memory.

• Complicated to implement yourself.

• Might be complicated to configure and tune.
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What is Terracotta?What is Terracotta?

Terracotta offers:

• A coherent, distributed and persistent JVM heap.

– Java objects created on the heap are available in all JVMs.

– Objects survive a JVM restart.

– Object identity is preserved between JVMs (no copies!)

– The heap can spill and does not have to stay in memory, to help avoid 

OOME.

Th  h  f ll  th   d th d d l f J• The heap follows the memory and thread model of Java.

– Java objects have coherent state between JVMs.

Threads in different JVMs interact just like threads in the same JVM– Threads in different JVMs interact just like threads in the same JVM.

• Requires no specific Java APIs.

• Integrates with other Java frameworks
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Network Attached Storage (NAS)Network Attached Storage (NAS)
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Network Attached Memory (NAM)Network Attached Memory (NAM)
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TerracottaTerracotta

• Terracotta server (100% Java)

– Can be configured in HA mode (active-passive). 

– Can be configured to persist all state on disk.

– Handles distributed object, memory and locks.

• Terracotta clients

– Is loaded into the JVM at boot time.

– Instruments specified Java classes with cluster behaviour.

– Automatically connects to the Terracotta server at boot time.

– Can be started with specific wrapper script (dso-java.sh).
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Demo: Terracotta HelloWorldDemo: Terracotta HelloWorld

public class HelloWorld {
private static int counter;p

public static void main(String [] args) {
System.out.println("Hello world, counter=" + counter++);

}
}
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How does it work?How does it work?
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How does it work?How does it work?
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How do you do it?How do you do it?

• Define root objects in your Java classes and instrument the classes 
that are to be clustered.

• All objects reachable from a root are clustered.

Rot
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Terracotta HelloWorld (configuration)Terracotta HelloWorld (configuration)

<dso>
<instrumented-classes>

Instrumentation
<instrumented classes>

<include>
<class-expression>HelloWorld</class-expression>

</include>
</instrumented-classes> R t bj t</instrumented classes>
<roots>

<root>
<field-name>HelloWorld.counter</field-name>
<root-name>counter</root-name>

Root object

<root name>counter</root name>
</root>

</roots>
<locks>

<autolock auto-synchronized="false">

Lock

<autolock auto synchronized false >
<method-expression>* HelloWorld.main(..)</method-expression>
<lock-level>write</lock-level>

</autolock>
</locks></locks>

</dso>
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Demo: Bouncing BallDemo: Bouncing Ball

• http://leepoint.net/notes-
java/examples/animation/40BouncingBall/bouncingball.html
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Use cases for TerracottaUse cases for Terracotta

• Distributed caching (HashMap, EHCache)

• Session Replication (Out-of-the-box). 

• Offload the database.

– Handle objects that does not have to be stored in the database.

• Simple messaging (LinkedBlockingQueue). 

• Workload partitioning.
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Demo: Simple Messaging (Writer)Demo: Simple Messaging (Writer)

import java.util.concurrent.*;

import static java.lang.System.*;

public class Writer {public class Writer {
static final BlockingQueue<String> queue = 

new LinkedBlockingQueue<String>(5);

public static void main(String [] args) throws Exception {  
out.println("Writer started...");
for(int i = 0; i < 10 ; i++){

queue put("msg-"+i);queue.put( msg +i);
out.println("Written msg-"+i);

}
queue.put("end");
out.println("Writer done");

}
}
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Demo: Simple Messaging (Reader)Demo: Simple Messaging (Reader)

import java.util.concurrent.*;

import static java.lang.System.*;

public class Reader {public class Reader {
static final BlockingQueue<String> queue = 

new LinkedBlockingQueue<String>(5);

public static void main(String [] args) throws Exception {
out.println("Reader started...");
boolean end = false;
while(!end) {while(!end) {

String msg = queue.take();
out.println("Reader received:" + msg);
if(msg.equals("end")) {end = true;}

}
out.println("Reader terminated!");

}
}

Terracotta, Slide 27
© Copyright 2009, Callista Enterprise AB

}



Demo: Simple Messaging (Config.)Demo: Simple Messaging (Config.)

<application>
d<dso>
<instrumented-classes>
<include>
<class-expression>Writer</class-expression>
/i l d</include>

<include>
<class-expression>Reader</class-expression>

</include>
</i t t d l ></instrumented-classes>
<roots>

<root>
<field-name>Writer.queue</field-name>
< t > </ t ><root-name>queue</root-name>

</root>
<root>
<field-name>Reader.queue</field-name>
< t > </ t ><root-name>queue</root-name>

</root>
</roots>

</dso>
</ li ti >
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Demo: Session ReplicationDemo: Session Replication
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Gnip Web 2.0 ESBGnip Web 2.0 ESB

• Gnip: http://www.gnipcentral.com/

• Blog: http://blog.gnipcentral.com
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Gnip Web 2.0 ESBGnip Web 2.0 ESB

• 99.9%: the Gnip service has 99.9% up-time. 

• 10: ten Ec2 instances, of various sizes, run the core, redundant, message bus 

infrastructure. 

• 2.5 million unique activities are HTTP POSTed (pushed) into Gnip’s Publisher front 

door each day. 

2 8 illi  ti iti   HTTP POST d ( h d) t G i ’  C  b k d  h • 2.8 million activities are HTTP POSTed (pushed) out Gnip’s Consumer back door each 

day. 

• 2.4 million activities are HTTP GETed (polled) from Gnip’s Consumer back door each (p ) p

day. 

• $0: no money has been spent on framework licenses (unless you include “AWS”).

• >50.000 Terracotta transactions per second.
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Conclusions and reflectionsConclusions and reflections

• Do we really need a RDBMS for this system?

• If we do, which objects needs to be stored in the database?

• We can build real object oriented domain models without 
constraints.

d b• Terracotta is no database!

• There is an integration module for Lucene/Compass.

• Terracotta is built to make the world simpler (for developer and 
operator).operator).

• Terracotta has been open sourced for two years.
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There is no silver bulletThere is no silver bullet
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Extra slidesExtra slides
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Network Attached Memory (NAM)Network Attached Memory (NAM)
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