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About this talk

• Pragmatic introduction to a new design paradigm
• Touch-points to domain-driven design
• I have SOME practical experience
• I have given the topic a LOT of thought
• A little (very little) of language geekiness
• 16 lines of code
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My goal with this talk is to…
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…make your brain boil of inspiration!
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About DCI

• A New Vision of Object-Oriented Programming
• Origin in Norway and Denmark

– Trygve Reenskaug (once invented MVC while at Xerox Parc)
– Jim Coplien
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DDD works well for this…
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But less well for this…
…which is quite common in midsize- to large systems
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Because you either end up with this…
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…or this….
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What if….
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…use-case logic could be 
ATTACHED to domain 
objects when needed but 
still OWNED by the 
application modul?
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Like this….
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Compile-time…
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Package com.my.forecasting-app

Package com.my.supply-chain-domain

Classes with use-case-specific action logic

"fragments" of use-case-specific domain behavior

Skinny domain classes with domain-bound behavior

Package com.my.procurement-app

Classes with use-case-specific action logic

"fragments" of use-case-specific domain behavior

domain 
schema
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Deploy-time…
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procurement-app.jar

actions.jar

domain-fragments.jar

supply-chain.domain-repo.jar

forecasting-app.jar

actions.jar

domain-fragments.jar

supply-chain.domain-repo.jar

domain 
schema
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Runtime view….
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…of an interaction within the 
ProduceQuarterlyForecast use-
case… 

Article: "Bolt"
ordered: 
pricelist: 

 calcNextQuaterSales()

OrderItem: 1
amount: 23 
order: ...

OrderItem:43
amount: 23 
order: ...

Pricelist:56

myProduce
QuarterlyForecastContext

fourcastCalculatorRole 

Data objects and 
(interacting) roles

Context objects
(use-case realization)

DCI = Data, Context and Interactions

...

meanPriceBetween
       Dates(d1, d2)

execute() 
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Runtime view….
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…of an interaction within the 
SendSignedOrdersToSupplie
r use-case… 

Article: "Bolt"
ordered: 
pricelist: 

 produceItemMasterXML()

mySendSignedOrders
ToSupplierContext

oagisItemMasterRole 

Data objects and 
(interacting) roles

Context objects
(use-case realization)

DCI = Data, Context and Interactions

execute() 
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public class Article {
List<OrderItem> ordered;
PriceList pricelist;

public BigDecimal calcNextQuaterSales() {
BigDecimal qSales = …
ordered.findAll {OrderItem item -> 

item.deliveryDate > Calendar.nextQuaterStart 
&& item.deliveryDate < Calendar.nextQuaterEnd}.each {OrderItem item ->
qSales += item.amount 

* pricelist.meanPriceBetweenDates
(Calendar.nextQuaterStart, Calendar.nextQuaterEnd)

}
return qSales

}
}

Taking a look at the role 
implementation….
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Article: "Bolt"
ordered: 
pricelist: 

 calcNextQuaterSales()

OrderItem: 1
amount: 23 
order: ...

OrderItem:43
amount: 23 
order: ...

Pricelist:56
...

meanPriceBetween
      Dates(d1, d2)
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Techically, how can we do this?
…as a Java developer…

• Using Java + an advanced framework
– Proxies, indirections …
– There are frameworks! 

» Qi4J (has a much bigger scope than DCI, but supports DCI. Has an issue with 
dependency management when nesting contexts from different modules)

» “Behaviour Injection” – “DCI as simple as it gets with plain Java”

• Using a JVM-language with matching capabilities
– Scala (Traits and implicits are good matches to DCI Roles)
– Groovy (dynamic, which takes you fairly close to “pure” DCI)

• Using legacy languages with matching capabilities
– C++
– Objective-C

• Let’s go for Groovy
– An extension of Java, builds on JDK, I like it….
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What does Groovy has to offer DCI?
Mechanisms in Groovy to add code to an existing class

• Groovy Categories
– Add “Role methods” dynamically to a class within an interaction
– Not instance-level

• Groovy Mixins
– Add “Role Methods” to class or instance
– Not scoped to an interaction

• My choice: Mixins (more “DCI:ish)
– In DCI, a role is acted by an instance
– Categories (when using AST-transforms) have limitations
– Minus: Using Mixins is a bit more “techie”

17
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Groovy Mixin Simple Sample
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Cal cul at eNet Pr i ceCont ext PriceRole : 
aBigDecimal

get netPrice

Context: CalculateNetPriceContext
Data: a BigDecimal
Interaction: netPrice on Role PriceRole
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The code – Define the Role (the mixin)
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class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()
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The code – Context assigns role to data
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class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()
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The code – method to execute 
interaction
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class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()
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The code – ask the context to conduct 
the interaction
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class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()
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Let’s revisit the BIG system….
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Domain Class

Order

Role classes

Supplier

Article
PriceListOrderItem Domain Class

Context classes
Allocate (mix-in) use-case behavior (Role 

classes) to domain objects

Forecasting app

Supply-chain domain model

What we get:
- The "requirements script" (user story) is in 
ONE PLACE / package (not scattered 
across packages/layers) 
- Still an object-oriented interaction model
- Much more simple to understand (less 
abstract) than a typical layered model
- Logic can migrate from Roles to Domain 
classes without impact on business logic

Allocate in 
runtime
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Clean dependency graph!
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Package com.my.forecasting-app

Package com.my.supply-chain-domain

Actions-classes

Role-classes

Skinny domain classes with domain-bound behavior

Package com.my.procurement-app

domain 
schema

Context-classes

Actions-classes

Role-classes

Context-classes
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All is good so far – but what about…

• Dependency injection
– Less stateless objects but works as usual

• Testing
– A Mixin needs to be bound to target data class to be tested (if 

logic depends on the target class)
• Debugging

– Groovy debugging works nice in major IDE:s (e.g. Eclipse)
• Nesting / layers / hierarchies

– Role-nesting across “to-one” relationships
– Context-nesting for use-case-level re-use (“Habits” rather than 

“Use-cases”)

25
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What did I use it for?

• Domain-model
– JAXB-classes generated from a metadata exchange format 

(service repository)
• Use-case

– Generate Web-service metadata on the fly (WSDL) from the 
logical metadata model

• Architecture
– Context class for assigning WS-metadata roles to model-classes of 

the logical service model
– Role implemented in Groovy
– An incarnation of it is here: http://wsdltools.appspot.com/

26
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When doesn’t DCI make sense?

• It doesn’t pay off when the use-case is a “mirror” of the 
domain/entity model
– Plain CRUD
– When the problem is not communicated in terms of 

processes, algorithms, transaction scripts, activities etc

27
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Did I teach you DCI?
Not sure, really…but I’m convinced it is useful

• The DCI vision is a composition of several concepts
– Picking few or even most of the concepts may not result in 

DCI nirvana
• Nirvana DCI is still a research topic
• Pragmatic DCI with Groovy may not qualify as a DCI 

implementation
– But it brings a lot of value to my design work

28
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Possible strategies for adoption

29

As-is

What you need to add:
- Groovy for mixins (may stick to 100% Java syntax or adopt 

Groovy as a language)
What you get:
- Rich, domain driven programming/design model
- Stable domain model
- Well-managed dependencies
Restrictions:
- No role access to context from role methods 

2: 
Framework

1: 
No 
framework

3:
IDE tools

What you need to add:
- Framework for context access from Role methods 
What you get:
- 1 + even less code in context (complete delegated orchestration) 

What you need to add:
- IDE tools
What you get:
- Full visibility in DCI modeling

Plain Java with 
Groovy mixins

1 + Groovy extension 
(e.g. annotation )

Or a DCI-capable Java 
framework

2 + ?
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Thanks for listening! Questions?
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