
Avoid Cluttered Domain Models
with DCI and Groovy

Johan Eltes| johan.eltes@callistaenterprise.se | 2011-01-19

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

About this talk

• Pragmatic introduction to a new design paradigm
• Touch-points to domain-driven design
• I have SOME practical experience
• I have given the topic a LOT of thought
• A little (very little) of language geekiness
• 16 lines of code

2

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

My goal with this talk is to…

3

…make your brain boil of inspiration!

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

About DCI

• A New Vision of Object-Oriented Programming
• Origin in Norway and Denmark

– Trygve Reenskaug (once invented MVC while at Xerox Parc)
– Jim Coplien

4

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

DDD works well for this…

5

Use Case

Use Case

Use Case

Domain Class

Domain Class

Domain Class

Domain ClassDomain Class

Application

Use
Case

Use
Case

Use
Case

Domain
Class

Domain
Class

Domain
Class

Domain
ClassDomain

Class

ApplicationIntegration

Ownership boundary

(Release boundary)

application.war

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

But less well for this…
…which is quite common in midsize- to large systems

6

Use Case

Domain Class

Domain Class

Domain Class

Domain ClassDomain Class

Domain Class

Domain Class

Use Case
Use Case

Use Case

Use Case

Application Application

Shared/reused domain model

application.war

domain-model.jar

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Because you either end up with this…

7

Domain Class
Domain Class Domain Class

Use Case

Domain Class Domain ClassDomain Class
Domain Class

Services
Skinny services, re-using domain logic

Use Case Use Case

Services
Skinny services, re-using domain logic

Use Case

+
Use-case-specific logic

scattered across domain

model creating logical

dependency to use-cases.

Unstable (frequently

changing) domain model.

-
+

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

…or this….

8

Use Case

Domain Class

Domain Class

Domain Class

Domain ClassDomain Class

Domain Class

Domain Class

Services
Procedural,
stateless,

zilions of calls to property setters and
getters, low level of code re-use, entity
logic scattered across services, tight

coupling to domain layer

Use Case Use Case

Services
Procedural,
stateless,

zilions of calls to property setters and
getters, low level of code re-use, entity
logic scattered across services, tight

coupling to domain layer

Use Case

Stable, "Skinny"

domain model. No

use-cases-specific

behaviour.

+

--

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

What if….

9

…use-case logic could be
ATTACHED to domain
objects when needed but
still OWNED by the
application modul?

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Like this….

10

Domain Class

Order

Article: calcNextQuaterSales

Supplier

Use Case

Article
PriceListOrderItem Domain Class

Produce
quarterly
forecast Use Case

Send signed
orders to
supplier

Services
Skinny services, re-using domain logic+ Services

Skinny services, re-using domain logic+

Forecasting app Procurement app

Supply-chain domain model

Article: produceItemMasterXML

Supplier: receiveOpenOrdersSupplier: receiveQuaterlyForecast

Compile-time: Use-

case-bound domain

behaviour owned by

application.

Run-time: Use-case-

bound domain

behavior injected into

domain object BY

THE APP. +

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Compile-time…

11

Package com.my.forecasting-app

Package com.my.supply-chain-domain

Classes with use-case-specific action logic

"fragments" of use-case-specific domain behavior

Skinny domain classes with domain-bound behavior

Package com.my.procurement-app

Classes with use-case-specific action logic

"fragments" of use-case-specific domain behavior

domain
schema

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Deploy-time…

12

procurement-app.jar

actions.jar

domain-fragments.jar

supply-chain.domain-repo.jar

forecasting-app.jar

actions.jar

domain-fragments.jar

supply-chain.domain-repo.jar

domain
schema

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Runtime view….

13

…of an interaction within the
ProduceQuarterlyForecast use-
case…

Article: "Bolt"
ordered:
pricelist:

 calcNextQuaterSales()

OrderItem: 1
amount: 23
order: ...

OrderItem:43
amount: 23
order: ...

Pricelist:56

myProduce
QuarterlyForecastContext

fourcastCalculatorRole

Data objects and
(interacting) roles

Context objects
(use-case realization)

DCI = Data, Context and Interactions

...

meanPriceBetween
 Dates(d1, d2)

execute()

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Runtime view….

14

…of an interaction within the
SendSignedOrdersToSupplie
r use-case…

Article: "Bolt"
ordered:
pricelist:

 produceItemMasterXML()

mySendSignedOrders
ToSupplierContext

oagisItemMasterRole

Data objects and
(interacting) roles

Context objects
(use-case realization)

DCI = Data, Context and Interactions

execute()

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

public class Article {
List<OrderItem> ordered;
PriceList pricelist;

public BigDecimal calcNextQuaterSales() {
BigDecimal qSales = …
ordered.findAll {OrderItem item ->

item.deliveryDate > Calendar.nextQuaterStart
&& item.deliveryDate < Calendar.nextQuaterEnd}.each {OrderItem item ->
qSales += item.amount

* pricelist.meanPriceBetweenDates
(Calendar.nextQuaterStart, Calendar.nextQuaterEnd)

}
return qSales

}
}

Taking a look at the role
implementation….

15

Article: "Bolt"
ordered:
pricelist:

 calcNextQuaterSales()

OrderItem: 1
amount: 23
order: ...

OrderItem:43
amount: 23
order: ...

Pricelist:56
...

meanPriceBetween
 Dates(d1, d2)

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Techically, how can we do this?
…as a Java developer…

• Using Java + an advanced framework
– Proxies, indirections …
– There are frameworks!

» Qi4J (has a much bigger scope than DCI, but supports DCI. Has an issue with
dependency management when nesting contexts from different modules)

» “Behaviour Injection” – “DCI as simple as it gets with plain Java”

• Using a JVM-language with matching capabilities
– Scala (Traits and implicits are good matches to DCI Roles)
– Groovy (dynamic, which takes you fairly close to “pure” DCI)

• Using legacy languages with matching capabilities
– C++
– Objective-C

• Let’s go for Groovy
– An extension of Java, builds on JDK, I like it….

16

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

What does Groovy has to offer DCI?
Mechanisms in Groovy to add code to an existing class

• Groovy Categories
– Add “Role methods” dynamically to a class within an interaction
– Not instance-level

• Groovy Mixins
– Add “Role Methods” to class or instance
– Not scoped to an interaction

• My choice: Mixins (more “DCI:ish)
– In DCI, a role is acted by an instance
– Categories (when using AST-transforms) have limitations
– Minus: Using Mixins is a bit more “techie”

17

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Groovy Mixin Simple Sample

18

Cal cul at eNet Pr i ceCont ext PriceRole :
aBigDecimal

get netPrice

Context: CalculateNetPriceContext
Data: a BigDecimal
Interaction: netPrice on Role PriceRole

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

The code – Define the Role (the mixin)

19

class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

The code – Context assigns role to data

20

class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

The code – method to execute
interaction

21

class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

The code – ask the context to conduct
the interaction

22

class PriceRole {
BigDecimal getNetPrice() {

return this * 0.8
}

}

class CalculateNetPriceContext {
def priceRole

CalculateNetPriceContext(BigDecimal amount) {
amount.metaClass.mixin(PriceRole)
priceRole = amount

}

BigDecimal executeContext() {
return priceRole.netPrice

}
}

println new CalculateNetPriceContext(100.00).executeContext()

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Let’s revisit the BIG system….

23

Domain Class

Order

Role classes

Supplier

Article
PriceListOrderItem Domain Class

Context classes
Allocate (mix-in) use-case behavior (Role

classes) to domain objects

Forecasting app

Supply-chain domain model

What we get:
- The "requirements script" (user story) is in
ONE PLACE / package (not scattered
across packages/layers)
- Still an object-oriented interaction model
- Much more simple to understand (less
abstract) than a typical layered model
- Logic can migrate from Roles to Domain
classes without impact on business logic

Allocate in
runtime

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Clean dependency graph!

24

Package com.my.forecasting-app

Package com.my.supply-chain-domain

Actions-classes

Role-classes

Skinny domain classes with domain-bound behavior

Package com.my.procurement-app

domain
schema

Context-classes

Actions-classes

Role-classes

Context-classes

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

All is good so far – but what about…

• Dependency injection
– Less stateless objects but works as usual

• Testing
– A Mixin needs to be bound to target data class to be tested (if

logic depends on the target class)
• Debugging

– Groovy debugging works nice in major IDE:s (e.g. Eclipse)
• Nesting / layers / hierarchies

– Role-nesting across “to-one” relationships
– Context-nesting for use-case-level re-use (“Habits” rather than

“Use-cases”)

25

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

What did I use it for?

• Domain-model
– JAXB-classes generated from a metadata exchange format

(service repository)
• Use-case

– Generate Web-service metadata on the fly (WSDL) from the
logical metadata model

• Architecture
– Context class for assigning WS-metadata roles to model-classes of

the logical service model
– Role implemented in Groovy
– An incarnation of it is here: http://wsdltools.appspot.com/

26

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

When doesn’t DCI make sense?

• It doesn’t pay off when the use-case is a “mirror” of the
domain/entity model
– Plain CRUD
– When the problem is not communicated in terms of

processes, algorithms, transaction scripts, activities etc

27

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Did I teach you DCI?
Not sure, really…but I’m convinced it is useful

• The DCI vision is a composition of several concepts
– Picking few or even most of the concepts may not result in

DCI nirvana
• Nirvana DCI is still a research topic
• Pragmatic DCI with Groovy may not qualify as a DCI

implementation
– But it brings a lot of value to my design work

28

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Possible strategies for adoption

29

As-is

What you need to add:
- Groovy for mixins (may stick to 100% Java syntax or adopt

Groovy as a language)
What you get:
- Rich, domain driven programming/design model
- Stable domain model
- Well-managed dependencies
Restrictions:
- No role access to context from role methods

2:
Framework

1:
No
framework

3:
IDE tools

What you need to add:
- Framework for context access from Role methods
What you get:
- 1 + even less code in context (complete delegated orchestration)

What you need to add:
- IDE tools
What you get:
- Full visibility in DCI modeling

Plain Java with
Groovy mixins

1 + Groovy extension
(e.g. annotation)

Or a DCI-capable Java
framework

2 + ?

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

Thanks for listening! Questions?

30

© 2011 Callista Enterprise | www.callistaenterprise.seAvoid Cluttered Domain Models with DCI and Groovy

References

31

DDD
-http://domaindrivendesign.org/resources/ddd_terms

DCI
-Vision/definition: http://www.artima.com/articles/dci_vision.html
-With Java: http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
-With Qi4J: http://www.qi4j.org/
-Öredev-talk by James Coplien: http://vimeo.com/8235574
-Discussion group (Google group): http://groups.google.com/group/object-composition/

Groovy
-Categories: http://docs.codehaus.org/display/GROOVY/Groovy+Categories
-Mixins:
http://archive.groovy.codehaus.org/lists/dev@groovy.codehaus.org/msg/4cf0f24c0804081656l5aed67b5hf34fc73cbea37
5b0@mail.gmail.com
-Advanced meta programming: http://www.slideshare.net/zenMonkey/metaprogramming-techniques-in-groovy-and-grails

http://domaindrivendesign.org/resources/ddd_terms
http://www.artima.com/articles/dci_vision.html
http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
http://www.maxant.co.uk/tools/archive/maxant-dci-tools-1.1.0.pdf
http://www.qi4j.org/
http://vimeo.com/8235574
http://groups.google.com/group/object-composition/
http://groups.google.com/group/object-composition/
http://groups.google.com/group/object-composition/
http://archive.groovy.codehaus.org/lists/dev@groovy.codehaus.org/msg/4cf0f24c0804081656l5aed67b5hf34fc73cbea375b0@mail.gmail.com
http://archive.groovy.codehaus.org/lists/dev@groovy.codehaus.org/msg/4cf0f24c0804081656l5aed67b5hf34fc73cbea375b0@mail.gmail.com

