
| CALLISTAENTERPRISE.SE

GRAPH QL

STEPHEN.WHITE

2

GRAPH-QL

• My Interest
• What is Graph QL
• Demo
• Why GraphQL
• Summary

3

AGENDA

4

REACT EU CONF

5

POINTS TO REMEMBER

Developer Experience

DX

6

POINTS TO REMEMBER

Reason

about your code

7

MEETUP QUOTE

React just vanishes into your code

8

MEETUPS - GÖTEBORG REACTJS

http://www.meetup.com/ReactJS-Goteborg/

9

MEETUPS - LONDON REACTJS

http://www.meetup.com/London-React-User-Group/

10

AND SERIOUSLY!

260 BILLION!
Requests a day!

11

WHAT

What is it?

12

WHAT

It’s a graph query language
that presents the
Possibilities
of your API

13

WHAT

It’s not a Data Store or SQL
But acts as
A Server side Translation
between your client and your
Data Store

14

TOO MANY ADAPTERS!

Server

RESTfull API

IOS

Adapter

Android

Adapter

Web/JS

Adapter

15

ONE ADAPTER TO RULE THEM ALL!

Client Server Data Sources

Rest API

GraphQL Schema

Data Store

Mediates/Adapts/Aggregates
The client decides the format of it’s data via it’s queries

this data graph please

here’s your data graph

• Hierarchy
• A Product-centric approach (client)
• Client-specified queries
• Backwards Compatibility
• Structured Code, in the form of Composition
• Application-Layer Protocol
• Types
• A Method of Introspective

16

WHAT - IT PRESENTS YOU WITH

17

CORE PRINCIPLES

• Compossible
• Mental Model
• Graph Data
• Types
• Version Agnostic

18

CORE PRINCIPLES

Its Compossible

19

CORE PRINCIPLES

Posts

query{
 posts{
 _id,
 title
 }
}

returns :
posts :
[{ _id,title}]

Post
query{
 posts(_id:1){
 _id,
 title,
 body
 }
}

Comments
query{
 comments(postfk:1){
 _id,
 commentText: body
 }
}

"posts": [
 {
 "_id": 1,
 "title": "ReactJS",
 "body": "redux, immutablejs"
 }
]

"comments": [
{

 "_id": 1,
 "commentText": “Redux?"
 },

. . .
]

20

CORE PRINCIPLES

Types

21

CORE PRINCIPLES

Mental Model

22

CORE PRINCIPLES

Graph of Data

23

CORE PRINCIPLES

Version Agnostic

24

REST API

App Server Client

Models v1 Views v1

/v2/model/34.plz

Your model

Models v2 Views v2

25

GRAPH-QL

App Server Client

Requirements

Possibilities

26

GRAPH-QL

App Server Client

Models v1

Views v1

this data shape please!

Heres your specific data

Models v2

Views v2

27

DEMO

Technical Setup

28

MODEL

User *

*

*

1

1

1

Comments

Post

Server
Node

NODE JS IMPLEMENTATION

React Client
Query

Postgres DB

Defines the possibilities of your API maybe similar to an Interface

Adapter

Express

GraphQL
Schema

React Client

30

CLIENT CODE

// general query function, using fetch and returning a promise
export function query(query) { 
 return fetch(gqlserver, { 
 method: 'post',  
 headers: { 'Content-Type':'application/graphql' }, 
 body: query, 
 }).then((result, error)=>{ 
 return result.json(); 
 }) 
}
// defined query
export function getPost(id) { 
 let postsQuery = `{posts(_id:${id}){_id,title,body}}`;  
 return query(postsQuery); 
}
// mutation to update a post
export function updatePost(post) { 
 let jsPost = post.toJS(); 
 let addCommentQuery = `mutation { updatePost(_id:$
{jsPost._id},body:"${jsPost.body}"){_id,title,body,userfk}}`;  
 return query(addCommentQuery); 
}

31

GRAPHQL-SCHEMA

GraphQL Schema
// Types
const User = new GraphQLObjectType({})
const Post = new GraphQLObjectType({})
const Comment = new GraphQLObjectType({})

// Queries
const Query = new GraphQLObjectType({

// Mutations
const Mutation = new GraphQLObjectType({

// Schema
const Schema = new GraphQLSchema({ 
 description:’my scheam',  
 query: Query, 
 mutation: Mutation 
});

32

GRAPHQL-ADAPTER

Adapter

return {
findById:function(name, id, res){…},
find: function(name, query, res){…},
put: function(name, res, req){…},
delete: function(name, id, res){…}
}

33

DEMO

Code And Demo

https://react-blogg-server.herokuapp.com/gql

https://react-blogg-client.herokuapp.com/

https://github.com/maitriyogin/react-blogg-server

https://github.com/maitriyogin/react-blogg-client

https://react-blogg-server.herokuapp.com/gql
https://react-blogg-client.herokuapp.com/
https://github.com/maitriyogin/react-blogg-server
https://github.com/maitriyogin/react-blogg-client

34

HISTORY

Brief history

It started with a news feed

35

MOVE TO MOBILE

HTML5

Facebooks move to Mobile 2011

Native Client

36

ORIGINAL STACK

HTML

Web Browser

Application Server

Data Services

37

NATIVE SHELL AROUND A WEB VIEW

HTML

Native App

Application Server

Data Services

Web Browser

Business Logic

38

NATIVE CLIENT WITH REST

REST/JSON

Native App

Application Server

Data Services

Components/Models
Business Logic

39

MOVED TO REST

RESTful API

40

PROBLEMS THEY ENCOUNTERED WITH REST

Coupling : Tight
Cohesion: Low

• Multiple round trips for complicated object graphs
• Client Transformations
• Too many ad hoc endpoints
• Documentation or specifications invariably become

outdated.
• REST is intended for long-lived network-based

applications that span multiple organisations…
• Not really suited for an API that serves a client app

built by the same organisation.

41

MAIN ISSUES WITH REST, DRIVERS TO GRAPHQL

42

GRAPH-QL

43

CLIENT FIRST

Client first!
Product Centric
Graph of Data
Client decides the shape
Only get what you need

44

GRAPHQL ARCH

JSON Data Graph

Native App

Application Server

Data Services

Components/Models
Business Logic

GraphQL Schema

• Composition : The component decides!
• The api/queries are decided by the client needs
• One endpoint
• Version agnosticism
• No need for multiple client transformation
• GraphIQL - self documenting api - very cool!
• Relay… next time

45

SUMMARY

46

REST API

https://react-blogg-server.herokuapp.com/api/posts

https://react-blogg-server.herokuapp.com/api/users

https://react-blogg-server.herokuapp.com/api/comments

https://react-blogg-server.herokuapp.com/api/posts
https://react-blogg-server.herokuapp.com/api/users
https://react-blogg-server.herokuapp.com/api/comments

