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GRAPH-QL



• My Interest 
• What is Graph QL 
• Demo 
• Why GraphQL 
• Summary
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AGENDA
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REACT EU CONF
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POINTS TO REMEMBER

Developer Experience

DX
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POINTS TO REMEMBER

Reason

about your code
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MEETUP QUOTE

React just vanishes into your code
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MEETUPS - GÖTEBORG REACTJS

http://www.meetup.com/ReactJS-Goteborg/
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MEETUPS - LONDON REACTJS

http://www.meetup.com/London-React-User-Group/
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AND SERIOUSLY!

260 BILLION!
Requests a day!
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WHAT

What is it?
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WHAT

It’s a graph query language  
that presents the  
Possibilities  
of your API
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WHAT

It’s not a Data Store or SQL 
But acts as 
A Server side Translation  
between your client and your  
Data Store
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TOO MANY ADAPTERS!

Server

RESTfull API

IOS

Adapter

Android

Adapter

Web/JS

Adapter
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ONE ADAPTER TO RULE THEM ALL!

Client Server Data Sources

Rest API

GraphQL Schema

Data Store

Mediates/Adapts/Aggregates
The client decides the format of it’s data via it’s queries

this data graph please

here’s your data graph



• Hierarchy 
• A Product-centric approach ( client ) 
• Client-specified queries 
• Backwards Compatibility 
• Structured Code, in the form of Composition 
• Application-Layer Protocol 
• Types 
• A Method of Introspective
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WHAT - IT PRESENTS YOU WITH
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CORE PRINCIPLES

• Compossible 
• Mental Model 
• Graph Data 
• Types 
• Version Agnostic
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CORE PRINCIPLES

Its Compossible
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CORE PRINCIPLES

Posts 

query{ 
  posts{ 
    _id, 
    title 
  } 
} 

returns : 
posts :  
[{ _id,title}]

Post 
query{ 
 posts(_id:1){ 
    _id, 
    title, 
    body 
  } 
}

Comments 
query{ 
  comments(postfk:1){ 
    _id, 
    commentText: body 
  } 
}

"posts": [ 
 { 
   "_id": 1, 
   "title": "ReactJS", 
   "body": "redux, immutablejs" 
 } 
]

"comments": [ 
{  

  "_id": 1,  
  "commentText": “Redux?" 
      }, 

. . . 
]
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CORE PRINCIPLES

Types
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CORE PRINCIPLES

Mental Model
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CORE PRINCIPLES

Graph of Data
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CORE PRINCIPLES

Version Agnostic
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REST API

App Server Client

Models v1 Views v1

/v2/model/34.plz

Your model

Models v2 Views v2
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GRAPH-QL

App Server Client

Requirements

Possibilities
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GRAPH-QL

App Server Client

Models v1

Views v1

this data shape please!

Heres your specific data

Models v2

Views v2
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DEMO

Technical Setup
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MODEL

User *

*

*

1

1

1

Comments

Post



Server
Node

NODE JS IMPLEMENTATION

React Client 
Query

Postgres DB

Defines the possibilities of your API maybe similar to an Interface

Adapter

Express

GraphQL 
Schema



React Client 
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CLIENT CODE

// general query function, using fetch and returning a promise 
export function query(query) { 
  return fetch(gqlserver, { 
    method: 'post',  
    headers: { 'Content-Type':'application/graphql' }, 
    body: query, 
  }).then((result, error)=>{ 
    return result.json(); 
  }) 
} 
// defined query 
export function getPost(id) { 
  let postsQuery = `{posts(_id:${id}){_id,title,body}}`;  
  return query(postsQuery); 
} 
// mutation to update a post 
export function updatePost(post) { 
  let jsPost = post.toJS(); 
  let addCommentQuery = `mutation { updatePost(_id:$
{jsPost._id},body:"${jsPost.body}"){_id,title,body,userfk}}`;  
  return query(addCommentQuery); 
}
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GRAPHQL-SCHEMA

GraphQL Schema
// Types 
const User = new GraphQLObjectType({}) 
const Post = new GraphQLObjectType({}) 
const Comment = new GraphQLObjectType({}) 

// Queries 
const Query = new GraphQLObjectType({ 

// Mutations 
const Mutation = new GraphQLObjectType({ 

// Schema 
const Schema = new GraphQLSchema({ 
  description:’my scheam',  
  query: Query, 
  mutation: Mutation 
}); 
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GRAPHQL-ADAPTER

Adapter

return { 
findById:function(name, id, res){…}, 
find: function(name, query, res){…}, 
put: function(name, res, req){…}, 
delete: function(name, id, res){…} 
} 
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DEMO

Code And Demo

https://react-blogg-server.herokuapp.com/gql

https://react-blogg-client.herokuapp.com/

https://github.com/maitriyogin/react-blogg-server

https://github.com/maitriyogin/react-blogg-client

https://react-blogg-server.herokuapp.com/gql
https://react-blogg-client.herokuapp.com/
https://github.com/maitriyogin/react-blogg-server
https://github.com/maitriyogin/react-blogg-client
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HISTORY

Brief history

It started with a news feed
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MOVE TO MOBILE

HTML5 

Facebooks move to Mobile 2011 

Native Client 
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ORIGINAL STACK

HTML

Web Browser

Application Server

Data Services
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NATIVE SHELL AROUND A WEB VIEW

HTML

Native App

Application Server

Data Services

Web Browser

Business Logic
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NATIVE CLIENT WITH REST

REST/JSON

Native App

Application Server

Data Services

Components/Models
Business Logic
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MOVED TO REST

RESTful API
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PROBLEMS THEY ENCOUNTERED WITH REST

Coupling : Tight 
Cohesion: Low



• Multiple round trips for complicated object graphs 
• Client Transformations 
• Too many ad hoc endpoints 
• Documentation or specifications invariably become 

outdated. 
• REST is intended for long-lived network-based 

applications that span multiple organisations…  
• Not really suited for an API that serves a client app 

built by the same organisation.
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MAIN ISSUES WITH REST, DRIVERS TO GRAPHQL
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GRAPH-QL
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CLIENT FIRST

Client first!
Product Centric
Graph of Data
Client decides the shape
Only get what you need
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GRAPHQL ARCH

JSON Data Graph

Native App

Application Server

Data Services

Components/Models
Business Logic

GraphQL Schema



• Composition : The component decides! 
• The api/queries are decided by the client needs 
• One endpoint 
• Version agnosticism 
• No need for multiple client transformation 
• GraphIQL - self documenting api - very cool! 
• Relay… next time
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SUMMARY
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REST API

https://react-blogg-server.herokuapp.com/api/posts

https://react-blogg-server.herokuapp.com/api/users

https://react-blogg-server.herokuapp.com/api/comments

https://react-blogg-server.herokuapp.com/api/posts
https://react-blogg-server.herokuapp.com/api/users
https://react-blogg-server.herokuapp.com/api/comments

