
| CALLISTAENTERPRISE.SE2017-01-25

CADEC 2017 - DDD & MICROSERVICES
STORA FÖRDELAR MED SMÅ TJÄNSTER

ANDREAS TELL

META PRESENTATION

Out of scope:
• Infrastructure
• DDD In-Depth

In this talk:
• Brief intro to main concepts
• Rationales
• Useful DDD concepts
• Migration

http://blogs.gartner.com/gary-olliffe/2015/01/30/microservices-guts-on-the-outside/

META PRESENTATION

?

App Boundary App Boundary

DDD?

DDD - BLUE OR RED PILL?

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577

(c) Disney

”Domain-Driven Design (DDD) is an approach to software development for complex needs by
connecting the implementation to an evolving model”

DDD - DEFINITION

Focus on the Domain and the complexity and opportunity within it

Write software that expresses
those models, using a defined

terminology and concepts
within an explicit boundary

Base complex designs on models…
produced by an iterative and close

collaboration between Domain
Experts and Software Experts

May not carry it’s own weight for trivial problems

https://en.wikipedia.org/wiki/Domain-driven_design

DDD - TWO PARTS

•Bounded Context
•Ubiquitous Language
•Subdomains
•Context Mapping

Strategic

•Service
•Aggregate
•Entity
•Value Object
•Repository
•Domain Event

Tactical

MICROSERVICES
Def inition

”Small, autonomous services
that work together, modelled around a

business domain.”
Sam Newman, ”Building Microservices” O'Reilly Media 2015

MICROSERVICES
Yet a def inition

• Autonomous software component

• Share nothing architecture

• Deployed as a runtime processes

• Small enough to fit in the head of a developer

• Big enough to avoid unacceptable latency and data inconsistency…

➜ A group of microservices form a Distributed System

WHAT’S A MICROSERVICE?

14

Cadec 2016 – ”Microservices and Docker containers”

MICROSERVICES
Def inition

”Small, autonomous services
that work together, modelled around a

business domain.”
Sam Newman, ”Building Microservices” O'Reilly Media 2015

?

SIZE?

Monolith

Mini
Micro FaaS

”Microservices Architecture”

When starting out with Microservices, aim for coarse grained services.

?

Gartner: By 2017, more than 90% of organizations that try microservices will find the
paradigm too disruptive and use miniservices instead.

META PRESENTATION

Out of scope:
• Infrastructure
• DDD In-Depth

In this talk:
• Brief intro to main concepts
• Rationales
• Useful DDD concepts
• Migration

RATIONALE FOR MICROSERVICES

• Time to market
• AgilityBusiness

• Scalability (Elasticy, Density, Performance)
• Resilience
• Deployability

Runtime

• Autonomous ”DevOps teams” formed around business capabilitiesOrganization

• Polyglot (across the entire stack)
• Replaceability & Composability
• Small …

Maintainability

SMALL IS THE NEW BLACK
Benef its of ”Small ”:
• Easier to understand
• Enables small and efficient teams
• Likelihood of successful project higher (on

time and budget)

https://www.infoq.com/articles/standish-chaos-2015

… NO SUCH THING AS A FREE LUNCH

• Rapid Provisioning
• Basic Monitoring
• Rapid Application Deployment

Distributed Systems:˝

Stateless˝

Immutable infrastructure˝

Service Discovery, API Gateway,

Circuit Breakers, Centralized

Configuration, Monitoring/Logging˝

Latency˝

New integration patterns˝

Eventual Consistency˝

Continuous Delivery˝

DevOps - NoOps˝

New Governence Standards˝

New Release Process

https://martinfowler.com/bliki/MicroservicePrerequisites.html

RATIONALE FOR DDD AND MICROSERVICES?
Challenges in the ”traditional enterprise”

• Complex business process (and organization)
• A (large) gap between IT and business
• Long lifecycle of software systems
• (Legacy)

https://www.flickr.com

DDD AND MICROSERVICES? HOW DO THEY CONVERGE?

Microservices
• Scalability
• Agility

DDD
• Complexity

BOUNDARIES
MODULARITY
COUPLING
COHERENCE
SRP (Single
Responsibility
Principle)

DDD paired with Microservices can amplify the quality attributes of the software solution.

META PRESENTATION

Out of scope:
• Infrastructure
• DDD In-Depth

In this talk:
• Brief intro to main concepts
• Rationales
• Useful DDD concepts
• Migration

BOUNDED CONTEXT

• A delimited autonomous,
Domain Model

• Vocabulary of the
Ubiquitous Language

• Has interfaces (to other
BCs)

Domain

SubdomainSubdomainSubdomainSubdomain

Problem Space Solution Space

Domain ˝
Model

SubdomainSubdomainSubdomainBounded˝
Context

”… a boundary (typically a subsystem, or the work of a particular team) within which a particular
model is defined and applicable.

BOUNDED CONTEXT

• How do we find them?
• Bounded Context in software:
- Logical separation-> Weak: Namespaces (JVM: Packages)
- Binary separation-> Medium: Binary artifacts (JVM: JAR)
- Process separation -> Strong: Deployment Unit separation

Model your Microservices around business domains, i.e. align Bounded Context with Service Boundary.

”… a boundary (typically a subsystem, or the work of a particular team) within which a particular
model is defined and applicable.

BOUNDED CONTEXT
Applied to a f ictive domain

Device

Billing NotificationIAM

Scenario User

= Bounded ContextApp Boundary App Boundary

Scenario

IAM

Device

Billing

User

Notification

CONTEXT MAP

• A simple diagram that captures the ”existing terrain”
• A catalyst for inter-team communication
• Find relationships with all other projects you depend on
• ”A Context Map is not an Enterprise Architecture or system topology diagram”

”Identify each model in play on the project and define its Bounded Context”

App Boundary

Example

Use Context Maps to get an understanding of how BC’s and services depend on each other.

CONTEXT MAP

Scenario Device

Notification

IAM

Reporting

ACL

Customer-
Supplier

Conforms

Partners

U

U

U

D

D

D

AC
L

AC
L

D

D U

U

AGGREGATE

• Arrange related objects under a common ”parent” designated
as the Aggregate Root

• Reference other Aggregates (Root) by Identity
• A set of consistency rules applies within the aggregate
• Should be kept small (performance, scalability)
• Referenced Aggregates are eventually consistent

”A cluster of associated objects that are treated as a unit for the purpose of data changes”

Group Domain Objects as Aggregates (may be several in one BC) to identify the ”minimum size” of a
Microservice.

DOMAIN EVENTS

• Part of the Domain Model expressed in the Ubiquitous Language
• Identify Domain Events early to understand cross-service

communication needs and find service boundaries
• Event Sourcing and CQRS (Command Query Responsibility

Segregation) are common associated patterns…

”Something happened that Domain Experts care about”

htt
ps:

//w
ww

.th
ou

gh
tw

ork
s.c

om
/in

sig
hts

/bl
og

/sc
ali

ng
-m

icr
ose

rvi
ces

-ev
en

t-s
tre

am

Point-To-Point Orchestration

EDA Choreography

DOMAIN EVENTS

”Something happened that domain experts care about”

ID CUSTOMER_ID STATUS TOTAL …
345 7308 DRAFT 2255 …

ORDER table

ID CREDIT_LIMIT …
7308 5000 …

CUSTOMER table

CUSTOMER_ID ORDER_ID AMOUNT
7308 345 2255

RESERVED_CREDIT table

Broker

Order CustomerOrder Created Event

Credit Reserved Event

Model Domain Events to facilitate eventual consistency across Aggregates and Bounded Contexts - i.e. across
services in a Microservice context.

Eventual
Consistency

META PRESENTATION

Out of scope:
• Infrastructure
• DDD In-Depth

In this talk:
• Brief intro to main concepts
• Rationales
• Useful DDD concepts
• Migration

Device

Billing NotificationIAM

Scenario User

= Bounded ContextApp Boundary App Boundary

Scenario

IAM

Device

Billing

User

Notification

MIGRATION
Strategies
• Big Bang : dump and start over from scratch
• Strangler application
- http://paulhammant.com/2013/07/14/legacy-

application-strangulation-case-studies/
• Monolith first…
- https://martinfowler.com/bliki/MonolithFirst.html
• … or not
- http://martinfowler.com/articles/dont-start-

monolith.html
http://enterpriseitadoption.com/

”Oh %##!!”

THE STRUCTURED MONOLITH

Simon Brown http://www.codingthearchitecture.com/presentations/devnexus2016-modular-monoliths

• Independently scalable?
• Low impact schema changes?
• Technology opportunities?

DATA MIGRATION
One DB (schema) to rule them all?

Device

Billing NotificationIAM

Scenario User

= Bounded ContextApp Boundary App Boundary

Scenario

IAM

Device

Billing

User

Notification

DATA MIGRATION
Consequences and considerations

• ACID to Eventual Consistency
• Orphaned data?
• Data Aggregation?
- Consumer Pull
- Producer Push

ORDER table

API

ID CUSTOMER_ID STATUS TOTAL …
345 7308 DRAFT 2255 … ID CREDIT_LIMIT …

7308 5000 …

CUSTOMER table

CUSTOMER_ID ORDER_ID AMOUNT
7308 345 2255

RESERVED_CREDIT table

Order Customer

FK

TO SUM UP

• Most applications will benefit from a Microservices arch:˝

- Application Longevity - cost and complexity under long term control!˝

- Not just of about Scalability!˝

• BUT: Does your organization have the capabilities (culture, skills, infra)?

Microservices

• DDD is en excellent allied when crafting distributed applications - highly coherent, loosely coupled and

in tune with business˝

• Helps us find the Service Boundaries and gives internal structure˝

• Results in a domain model based on crips concepts, with little room for misconceptions.

DDD

• Stay with a well structured Monolith until you get boundaries right˝

• Partial replacement (Strangler pattern) to play it safe˝

• Start small (i.e. big) and learn as you go…

Migration

WHERE TO GO FROM HERE
References and Acknowledgments

https://
www.amazon.com/
Domain-Driven-
Design-Tackling-
Complexity-Software/
dp/0321125215

https://
www.amazon.com/
Continuous-Delivery-
Deployment-
Automation-Addison-
Wesley/dp/
0321601912/

https://www.amazon.com/
Release-Production-
Ready-Software-
Pragmatic-Programmers/
dp/0978739213

https://
www.amazon.com/
Building-
Microservices-
Designing-Fine-
Grained-Systems/dp/
1491950358/

https://
www.amazon.com/
Implementing-
Domain-Driven-
Design-Vaughn-
Vernon/dp/
0321834577

Eric Evans - Jan 2016 -
”Tackling Complexity In the
Heart of Software” :
https://www.youtube.com/
watch?v=dnUFEg68ESM

Greg Young, CQRS & Event
Sourcing
https://www.infoq.com/news/
2016/04/event-sourcing-anti-
pattern

http://codebetter.com/
gregyoung/2010/02/16/cqrs-
task-based-uis-event-sourcing-
agh/

Chris Richardson, Developing
Transactional Microservices

https://www.infoq.com/articles/
microservices-aggregates-events-
cqrs-part-1-richardson

