
| CALLISTAENTERPRISE.SE

LEAN & MEAN - GO MICROSERVICES WITH
DOCKER SWARM AND SPRING CLOUD

ERIK LUPANDER
2017-01-25

2

What Go?

3

• Background: The footprint problem.
• The Go programming language and developing in Go.
• Go in the context of microservices, Spring Cloud/Netflix OSS

and Docker Swarm.
• Demos!

ON THE AGENDA…

4

5

Can Go help us help us reduce the
footprint of a microservice?

THE FOOTPRINT PROBLEM

• As Björn just showed us, JVM-based solutions comes with a
hefty footprint.

• If you need to run tens or even hundreds of microservice
instances, cost is definitely a factor.

• For microservices, some other alternatives are NodeJS, C,  
C++, Python, Ruby and C#.
• Very interesting topic, we can return to it over beer tonight…

THE FOOTPRINT PROBLEM

6

THE GO LANGUAGE

7

The Go Language

THE GO LANGUAGE

8

”Go is an attempt to combine the ease of programming of an
interpreted, dynamically typed language, with the efficiency

and safety of a statically typed, compiled language.”

Go official FAQ

THE GO LANGUAGE

9

Go was designed …

THE GO LANGUAGE

10

”… to eliminate the slowness and clumsiness of
software development at Google”

Go official FAQ

• 50x build time improvement over C++
• Internal C++ application builds taking 30-75 minutes.

• Language level concurrency
• Better dependency management
• Cross-platform builds
• Readable and maintainable code

• Even for non superstar developers

WHAT WAS FIXED?

11

• Claims to be
• efficient, scalable and productive.

• Designed
• to improve the working environment for its designers and

their coworkers.
• for people who write—and read and debug and maintain—

large software systems.
• Is not

• a research language.

THE GO LANGUAGE

12

• Go is
• compiled, statically typed, concurrent, garbage-collected

• Has
• structs, pointers, interfaces, closures

• But does not have
• classes, inheritance, operator overloading, pointer arithmetic

THE GO LANGUAGE

13

WHY GOLANG - DEVELOPING

14

What does actual developers think about Go?

15

”… a disservice to intelligent programmers”
Gary Willoughby - blogger

16

”… stuck in the 70’s”
Dan Given

17

”… psuedointellectual arrogance of Rob Pike
and everything he stands for”

Keith Wesolowski

THE GO LANGUAGE

18

But also

19

”I like a lot of the design decisions they made in the [Go] language.
Basically, I like all of them.”

Martin Odersky, creator of Scala

20

”Go isn’t functional, it’s pragmatical. ”
Frank Mueller, tech blogger

21

”Go isn’t a very good language in theory, but it’s a great language in
practice, and practice is all I care about”

anonymous hackernews poster

THE GO LANGUAGE

22

Some pros and cons

• Easy to learn, readable, productive and pretty powerful.
• The built-in concurrency is awesome.
• Cross-platform.
• Rich standard APIs and vibrant open source community.
• Quick turnaround and decent IDE support (getting better!)
• Nice bundled tools.

• Built-in unit testing, profiling, coverage, benchmarking,
formatting, code quality…

• Strongly opinionated.
• Code formatting, compile errors on typical warnings.

DEVELOPMENT IN GOLANG - PROS

23

• Missing generics and more powerful built-in collection types.
• Dependency versioning
• Verbose

• Error checking, no autoboxing of primitive types etc.
• Unit testing and Mocking isn’t very intuitive

• But pretty powerful once one gets the hang of it.

DEVELOPING IN GOLANG - SOME CONS

24

• Some well-known software built entirely in golang
• Docker
• Kubernetes
• etcd

• Popularity rankings
• #13 on Tiobe Index per january 2017, up from #50, largest

increase during 2016.

WHO USES GOLANG

25

GOLANG - SYNTAX IN 2-5 MINUTES

26

Two code samples

SAMPLE CODE 1 - HELLO WORLD

27

SAMPLE CODE 2 - CONCURRENCY

28

29

Go microservices

ARCHITECTURAL OVERVIEW
Legend

• CB = Circuit Breaker (Go Hystrix)
• TA = Correlated tracing (Opentracing API / Zipkin)

EventService (Go)

Monitor
Dashboard

(Hystrix Dashboard)

OAuth
Authorization

Server
(spring-security)

CB

Trace
Analysis
(Zipkin)

Edge server  
(Netflix Zuul)

Security API (Go)

CB / TA

OAuth Res

Account Composite (Go)

CB / TA

Images (Go)

OAuth token relay

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Docker Swarm
cluster

Curl

AMQP

Configuration
Server

(spring-cloud-
config)

TA

Accounts (Go)

TA

AMQP
Messaging
(RabbitMQ)

Quotes-Service
 (Spring Boot)

• Low memory usage
• Overall performance on par with Java (as per Go 1.7)
• Fast startup
• However, Garbage Collector doesn’t have ~20 years of

maturity and isn’t very configurable.

WHY GOLANG - RUNTIME CHARACTERISTICS

31

• Statically linked binary produces an executable without
external dependencies.
• No more jar- or dll-hell
• No requirement on the OS having a JRE or other libraries

(except libc)
• Small executable

• Typically executable size for my microservices is 8-20 mb

GO MICROSERVICES - STATICALLY LINKED BINARIES

32

• In the context of Docker Containers, the statically linked binary
allows use of very bare parent images.

• I’m using iron/base which is ~6 mb, alpine is another popular
choice.

DOCKER CONTAINERS & STATICALLY LINKED BINARIES

33

FROM iron/base  
 
EXPOSE 6868  
ADD eventservice-linux-amd64 /
ADD healthcheck-linux-amd64 /  

HEALTHCHECK CMD [”./healthcheck-linux-amd64”, ”-port=6868”]

ENTRYPOINT ["./eventservice-linux-amd64", ”-profile=test”]

34

Demo 1
Footprint @ Docker Swarm

• Microservices doesn’t exist in isolation.
• A pleasant programming language and awesome runtime

characteristics isn’t quite enough.
• We need to integrate with various supporting services.

GO MICROSERVICE CONSIDERATIONS?

35

36

Consider:

• Centralized configuration
• Service Discovery
• Logging
• Distributed Tracing
• Circuit Breaking
• Load balancing
• Edge
• Monitoring
• Authentication and Authorization

MICROSERVICE CONSIDERATIONS

37

• On the application level, also consider things like:
• HTTP / REST / RPC APIs
• Messaging APIs
• Persistence APIs
• Testability

• DevOps

MICROSERVICE CONSIDERATIONS

38

MICROSERVICES - GO VS SPRING BOOT

39

• Spring Cloud / Netflix OSS with Spring Boot microservices
provides a very streamlined annotation-driven configuration
for integrating with these supporting services.
• Though the configuration files might be a bit complex.

• Go-based microservices in a Spring Cloud / Netflix OSS
landscape requires more up-front work for integrating with the
support components.

• With some basic software craftsmanship and code reuse I
personally don’t think it’s a very big deal.

• I have published a Go-based microservice integration library
for Spring Cloud / Netflix OSS on github:
• https://github.com/eriklupander/cloudtoolkit

• And there are a number of other more or less general purpose
microservice toolkits for Go:
• go-kit, kite, micro, gizmo

MICROSERVICES - GO VS SPRING BOOT

40

ARCHITECTURAL OVERVIEW
Legend

• CB = Circuit Breaker (Go Hystrix)
• TA = Correlated tracing (Opentracing API / Zipkin)

EventService (Go)

Monitor
Dashboard

(Hystrix Dashboard)

OAuth
Authorization

Server
(spring-security)

CB

Trace
Analysis
(Zipkin)

Edge server  
(Netflix Zuul)

Security API (Go)

CB / TA

OAuth Res

Account Composite (Go)

CB / TA

Images (Go)

OAuth token relay

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Docker Swarm
cluster

Curl

AMQP

Configuration
Server

(spring-cloud-
config)

TA

Accounts (Go)

TA

AMQP
Messaging
(RabbitMQ)

Quotes-Service
 (Spring Boot)

42

Things not really Go-related…

• Our Go services doesn’t care about the EDGE / reverse-proxy
• Netflix Zuul, Nginx, HAProxy …
• Must forward HTTP headers.

EDGE SERVER

43

SERVICE DISCOVERY AND LOAD BALANCING

44

• Load-balancing and Service Discovery is handled by the
orchestration engine.
• E.g. the Docker Swarm or Kubernetes ”Service” abstraction.

• Eureka service discovery and Ribbon-like client-based load-
balancing is easily implemented too.

45

Demo 2 -
Load balancing and fast scaling

@ Docker Swarm

46

Go Microservice
Anatomy

TA

HTTP / REST FRAMEWORK

47

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

HTTP FRAMEWORK (GORILLA)

48

HTTP FRAMEWORK (GORILLA)

49

CONFIGURATION

50

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

Docker Swarm

CONFIGURATION USING SPRING CLOUD CONFIG AND VIPER

51

CB / TACB / TAVIPER
git

repository
HTTPS

CB / TACB / TAVIPER

HTTP

HTTP

Configuration
Server

(spring-cloud-config)

• Viper supports YAML, .properties, JSON and Env-vars
• With a few lines of code, we can load and inject config from

Spring Cloud Config into Viper

CONFIGURATION - VIPER

52

CONFIGURATION - VIPER USAGE

53

LOGGING

54

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• Application logs with 3rd party library Logrus
• Supports levels, fields, formatters
• 30+ built-in hooks

LOGGING - LOGRUS

55

DISTRIBUTED TRACING

56

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• Track a request over multiple microservices
• Also trace within services and methods

• Invaluable for high-level profiling across the service stack.
• go-opentracing and zipkin

DISTRIBUTED TRACING

57

DISTRIBUTED TRACING - ZIPKIN

58

CIRCUIT BREAKER

59

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• Mechanism to make sure a single malfunctioning microservice
doesn’t halt the entire service or application.

• go-hystrix (circuit breaker)
• Netflix Turbine (aggregation)
• Netflix Hystrix (dashboard)

CIRCUIT BREAKING - HYSTRIX

60

• Example go-hystrix usage, non-blocking.

CIRCUIT BREAKING

61

CIRCUIT BREAKING - HYSTRIX DASHBOARD

62

HYSTRIX STREAM AGGREGATION

63

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• Hystrix stream aggregation using customized Netflix Turbine

CIRCUIT BREAKING

64

CB / TACB / TACB / TA

CB / TACB / TACB / TA

CB / TACB / TACB / TA

Monitor
Dashboard

(Hystrix Dashboard)

Go Services

RabbitMQ

Client Discovery token

Client Discovery token

:8181/hystrix.stream

:8181/hystrix.stream

:8181/hystrix.stream

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

:8282/turbine.stream

• Programmatic hystrix configuration

CIRCUIT BREAKING

65

• Stability
• Let it crash.
• Let unrecoverable errors panic the microservice, let the container

orchestrator handle restarts.
• Use HEALTHCHECK for liveness.

• Security
• EDGE + Auth Service
• Security context passed down the microservice ”stack” using Go’s

standard Context object and HTTP headers.
• Testing of microservices

• Write unit tests as usual.
• Leverage Docker and the Go Docker Remote API to build

integration tests with dependencies that’s started with go test.
• I strongly recommend looking into net/http/httptest and GoConvey

SOME GENERAL CONSIDERATIONS

66

SAMPLE CODE 3 - TESTING WITH GOCONVEY

67

• Go is an interesting option for microservices due to runtime
characteristics and rather pleasant developing.

• Genereally speaking, developing software in Go is often
productive and quite fun, but not without it’s fair share of
quirks especially regarding the lack of traditional OO
constructs and missing generics.

• Microservice development in Go requires a bit of work
regarding integration with supporting services, but can be
mitigated by using integration libraries such as go-kit or our
own little cloud-toolkit.
• Don’t be afraid to pick your favorites!

SUMMARY

68

WANT TO LEARN MORE?

69

• Coming spring 2017 from Packt

• Technical reviewers:
• Magnus Larsson
• Erik Lupander

DVIZZ - A DOCKER SWARM VISUALIZER

70

• https://github.com/eriklupander/dvizz
• Pull requests are more than welcome!

• Demo services: https://github.com/callistaenterprise/gocadec
• go-kit: https://github.com/go-kit/kit
• cloud-tookit: https://github.com/eriklupander/cloudtoolkit
• dvizz: https://github.com/eriklupander/dvizz
• packt book: https://www.packtpub.com/application-

development/building-microservices-go

RESOURCES

71

72

Questions?

