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AI VS ML VS DL

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING
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Complex problems where the human brain cannot find an analytical solution.
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• No analytical solution known 

• A pattern, a hunch of the problem domain 

• Lots of data
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THE HYPE - WHY NOW?

• IoT, Web-scale, Big Data 

• CPU perfomance vs GPU performance 

• Deep Learning (Google Brain, 2012)
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• Supervised learning 

• Unsupervised learning 

• Reinforced learning
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EXAMPLE: CREDIT APPROVAL

AVAILABLE DATA

Age Years in residence Yearly income Loans Good Customer 

1 36 4 400000 3000000 Yes
2 54 17 700000 1000000 Yes
… … … … … …
N 18 1 80000 0 No
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THE UNKNOWN TARGET FUNCTION - INPUT AND OUTPUT DATA

APPLICATION (INPUT):

Age 34
Yearly Income 400 000
Years in residence 6
Loans 2 000 000

CORRECT CREDIT DECISION (OUTPUT) :

Good customer yes/no Y = {�1, 1}y 2 Y

X = Rdx1, x2, ..., xd 2 X

x = [x1, x2, ..., xd]
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TRAINING EXAMPLES

TRAINING DATA

(x1, y1), (x2, y2), ..., (xN , yN )

Age Years in residence Yearly income Loans Good Customer 

1 36 4 400000 3000000 1
2 54 17 700000 1000000 1
… … … … … …
N 20 1 80000 0 -1

x1 x2 x3 x4 y1



TRAINING EXAMPLES

Learning 
algorithm 

Hypothesis set 

Unknown target function 

Final hypothesis 

Training examples 

MODEL

f : X 7! Y

(x1, y1), (x2, y2), ..., (xN , yN )

H
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EXAMPLE:  THE HYPOTHESIS SET

Deny if w1x1 + w2x2 + ...+ wdxd < threshold

Approve if w1x1 + w2x2 + ...+ wdxd > threshold

x1, x2, ..., xd Has something to do with it … 

Lets combine them into a credit score with weights since 
the attributes has different importance

w1x1 + w2x2 + threshold = 0



EXAMPLE:  A 2D PERCEPTRON

x1

x2

w0x0 + w1x1 + w2x2 = 0w1x1 + w2x2 + threshold = 0



EXAMPLE:  A 2D PERCEPTRON

x1

x2

w0x0 + w1x1 + w2x2 = 0w1x1 + w2x2 + threshold = 0



EXAMPLE:  A 2D PERCEPTRON

x1

x2

w1x1 + w2x2 + threshold = 0



EXAMPLE:  A 2D PERCEPTRON

x1

x2

w1x1 + w2x2 + threshold = 0



EXAMPLE:  A 2D PERCEPTRON

x1

x2

x1

x2

w1x1 + w2x2 + threshold = 0



EXAMPLE:  A 2D PERCEPTRON

x1

x2

w1x1 + w2x2 + threshold = 0



EXAMPLE:  A 2D PERCEPTRON

x1
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PERCEPTRON

• Weighted input, activation function and output

h(x) = sign

 
dX

i=0

wixi

!

xd

x2

x1

…

w1

w2

wd

y

x0 w0

sign(s)
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EXAMPLE:  THE PLA ALGORITHM

Perceptron Learning Algorithm 

1. Pick a specific hypothesis combination of weights, a weight vector 
w(i) 

2. Take the first test data vector and run it in the perceptron  
A. If the perceptrons result is the same as the test data output 

then take next testdata vector.  
B. Else correct the weights according to w(i+1) = w(i) + y(i)x(i) 

3. Continue with new testdata points until there are no misclassified 
left. 
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EXAMPLE:  THE PLA ALGORITHM ON A 2D PERCEPTRON

x1

x2

x1

x2

x1

x2

w1x1 + w2x2 + threshold = 0



FINAL HYPOTHESIS

• We have a result: 

g ⇡ f

x1

x2

g = sign(w1x1 + w2x2 + threshold)



OTHER LINEAR MODELS

xd

x2

x1

…

w1

w2

wd

x0 w0

sign(s)

Perceptron

y 2 {�1, 1}

x1

x2



OTHER LINEAR MODELS
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Linear regression

y 2 R

x1

y



OTHER LINEAR MODELS

xd

x2

x1

…

w1

w2

wd

x0 w0

y 2 R

✓(s)

Logistic regression

Ein(w)

w



NEUARAL NETWORKS

xd

x2

x1

x0

✓(s)

x0 x0

✓(s)

✓(s)
✓(s)

y

INPUT LAYER HIDDEN LAYER HIDDEN LAYER OUTPUT LAYER

✓(s)

✓(s)



THE LEARNING PROBLEM

Learning 
algorithm 

Hypothesis set 

Unknown target function 

Final hypothesis 

Training examples 

MODEL

f : X 7! Y

(x1, y1), (x2, y2), ..., (xN , yN )

H

A
g ⇡ f



WE HAVE A RESULT!

How do we know that it works outside of the training data?

g ⇡ f
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HOW DO WE VALIDATE THE RESULT?

• Error 
• Validation 
• Noise 
• Overfitting



        (in-sample error), how unsuccessful one hypothesis is on the training data set. 

The fraction of misclassified points in the training data set.

IN-SAMPLE ERROR

x1

x2

Ein

Ein =
1

N

NX

n=1

[[h(xn) 6= f(xn)]]
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             imperfectness of the final hypothesis outside of the training data 

                                                which is unknown

Eout

Eout = f(xout)� g(xout)Eout = f(xout)� g(xout)

x1

x2

Eout = f(xout)� g(xout)



SO WHAT SHOULD WE USE?

Virtual Reality!
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Virtual Reality!

80%

20%

TRAINING DATA

TEST DATA



TESTING AND VALIDATION

• Testing 
- Pure unbiased testing 

• Cross Validation 
- Not unbiased 
- More efficient method, you can use all data for both training and validation



NOISE

• The world is an ugly place … 
• The target function is maybe not a function but a probability distribution because of noise.

P (y|x) = f + noise

x
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• The world is an ugly place … 
• The target function is maybe not a function but a probability distribution because of noise.

P (y|x) = f + noise

x

y



• Some training data

OVERFITTING

x

y



• Ein > Large, no good hypothesis

OVERFITTING

x

y



• Ein > 0, not perfect fit

OVERFITTING

x

y



• Ein = 0 , fits perfect on training 
data 

• Success! Or?

OVERFITTING

x

y
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• Ein = 0 , fits perfect on training 
data 

• Eout = Really Big! 

• We have fitted the noise!!!

OVERFITTING

x

y



REGULARISATION

• One of the main solutions to Overfitting 
• You try to smoothen the fit with “breaks” on the weights

�



TO SUMMARISE

• Overfitting is the problem 
• Noise is the cause 
• We detect it with Validation 
• We cure it with Regularisation
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TOOLS

• Languages 
- Matlab, R, Python, Javascript, Julia men även Java 

• Frameworks 
- Low level: Tensor Flow, Theano, MXNet 
- High Level: Keras, DeepLearning4J 

• Hardware: Cuda 
• End 2 End: H20
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ADVERSARIAL PERTURBATIONS

• Anomaly detection 
• Self-driving cars





“- The primitive forms of artificial intelligence we already have 
have proved very useful. But I think the development of full 
artificial intelligence could spell the end of the human race.”  

Stephen Hawking, 2015
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H20

• End 2 End tool covering the whole workflow 
• Nice GUI (Notebook Style) 
• Both REST, Python, R, Scala API’s 
• Versions for Deep Learning, GPU etc etc … 
• Clustering of compute nodes 
• Apache 2.0 License



THE PROCESS

BUSINESS TARGET

%



WINE

3840 sorts of wine where tasted and graded and 
then sent to physiochemical analysis. 

Create a formula that can determine the wine 
quality from the physiochemical attributes 

Data from UCI Machine Learning Data Set 
repository



THE DATA

1 - fixed acidity 
2 - volatile acidity 
3 - citric acid 
4 - residual sugar 
5 - chlorides 
6 - free sulfur dioxide 
7 - total sulfur dioxide 
8 - density 
9 - pH 
10 - sulphates 
11 - alcohol 

Quality Score from 0.0 to 10.0

INPUT DATA OUTPUT DATA
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Hypotheis set



Algorithm



Regularisation
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FINAL POINT

The tools are here! 

Read the theory! 

Have fun!



CRED

• Big thanks to Yaser Abu-Mostafa of CalTech for the extremely inspiring 
teaching in the online course Learning From Data (see links on next slide), that 
has greatly inspired the theory parts of this presentation. Buy the book!



LINKS

• Learning From Data, CalTech Course http://work.caltech.edu/telecourse.html 
• Learning From Data, book https://www.amazon.com/gp/product/1600490069 
• H2O https://www.h2o.ai/ 
• UCI ML Data Set repository http://archive.ics.uci.edu/ml/datasets.html 
• Apple https://machinelearning.apple.com/ 
• Kaggle ML community: https://www.kaggle.com/ 
• Cross Validated https://stats.stackexchange.com


