
CADEC 2020.01.23 & 2020.01.29 | CALLISTAENTERPRISE.SE

BREAKING UP 
THE MONOLITH

MARTIN HOLT



INTRODUCTION

• Monolith Perceived as: 
- Complex - Difficult to Make Significant Change 
- Opaque - Little Insight into Ongoing Processes 
- Slow - Long Release Cycles 

• How Will Migrating To Microservices Affect This? 
• Presenting Two Case Studies: 
- Extracting A Feature 
- The Minimal Viable Product



CASE STUDY: 
EXTRACT A FEATURE



CASE STUDY: EXTRACT A FEATURE

• The Monolith Feature 
- Limited Functionality 
- Difficult to Configure 
- Unmonitored 
- Tied To Quarterly Release Cycles 

• Why Microservices? 
- Provide Richer Features 
- …Deliver Faster 
- …Deliver Frequently 
- Want to Experiment



CASE STUDY: EXTRACT A FEATURE - THE TEAM

• Developer Heavy Team 
- Autonomous 
- Short Iterations 
- Time-boxed 

• Steering Committee 
- Periodic Review 
- Initially a Single Architect



CASE STUDY: EXTRACT A FEATURE - PREPARATION

• Set The Scope: 
- Mission Statement 
- Document Assumptions 
- Identify Shortcuts 
- Reduce Risk 
» Limit Exposure 
» Manual Controls 
» Backup Plan 

- Identify Feedback Loops 
» How Do We Know This Is Working?



CASE STUDY: EXTRACT A FEATURE

A Few Iterations Later…



CASE STUDY: EXTRACT A FEATURE - DELIVERY

• Service Is Live In Record Time 
• Bugs Are Found And Fixed Quickly 
• Learning From Feedback 
- Metrics 
- Manual Controls 
- Steering Committee Review 

• Time For Next Iteration!



CASE STUDY: EXTRACT A FEATURE

A Few Iterations Later…



CASE STUDY: EXTRACT A FEATURE - MATURING THE DOMAIN

• Feature Rich Environment 
- Domain Complexity Increased 

• New Stakeholders 
- Increased Volumes 

• Consolidation 
- Removed Manual Processes 
- Increased Exposure 
- Dealt with Tech Debt



CASE STUDY: EXTRACT A FEATURE - GROWING PAINS

• The Forgotten Feature 
- Development Often UI Driven 
- Perceived as “Opaque” 

• Infrastructure 
- “It Should Just Work” 
- Harder to Gain (Good) Attention 
- Perceived as “Complex” 

• Multiple Stakeholders 
- Competing Priorities 
- Perceived as “Slow”



CASE STUDY: EXTRACT A FEATURE - REMEDIES

• Expand The Steering Committee 
- Invite Stakeholders 
- Prioritise Together 
- Highlight New Initiatives 

• Extend The Team 
- Permanent Business Representation 

• Engage With Developers 
- “Brown Bags” For Presence 
- User Groups to Identify Requirements 
- Allow Contributions 

• All Remedies Driven By Team 
- Required Significant Time Investment



SUMMARY

• Extract A Feature To Microservices 
- Rapid Initial Success 
- Low Initial Risk 
- Fits Into Existing Organisational Structures 
- Solution Can Mature Iteratively 

• Maturity Exposes Problems 
- Similar To Monolith (Complex, Opaque, Slow) 

• Engagement Required: 
- With Stakeholders 
- With Developer Community 
- …but is it Sustainable?



CASE STUDY: 
MINIMAL VIABLE PRODUCT



CASE STUDY: MINIMAL VIABLE PRODUCT

• Market Opportunity Identified 
- Need to React Quickly 
- Product Still Maturing 
- High Level of Uncertainty 
- Unwilling to Invest Heavily Upfront 
- Constraints on the Monolith 

• Solution 
- A Minimal Viable Product 
- …in a Microservice Environment



CASE STUDY: MINIMAL VIABLE PRODUCT - THE TEAM

• Stakeholder Initiated Team 
- Clear Business Presence and Goals 

• Data Driven 
- Metrics Identified Early (volumes, revenue streams) 
- Metrics Are Measurable 

• Steering Committee 
- Mostly Stakeholders 
- Regulate Direction of Product



CASE STUDY: MINIMAL VIABLE PRODUCT - DEFINE

• What is Smallest Deliverable That: 
- Makes Sense to the Customer 
- Will Fit In The Organisation 
- Can be Maintained by the Team 
- Is Compliant 

• Iterate And Gather Feedback



CASE STUDY: MINIMAL VIABLE PRODUCT - MANAGE RISK

• Limited Initial Exposure 
- Internal Validation Phase 
- Gentle Rollout To Customers 

• Limited Initial Commitment 
- May Not Sell as Expected 
- May Trigger Incidents 
- May Be a Target for Fraud



CASE STUDY: MINIMAL VIABLE PRODUCT

A Few Iterations Later…



CASE STUDY: MINIMAL VIABLE PRODUCT - DELIVERY

• Service Is Live! 
- Customers Are Flooding In… 
- …But In A Controlled Manner 

• Bugs Are Found And Fixed Quickly 
• Learning From Feedback 
- From Metrics 
- From Customer Feedback 
- From Other Teams 

• Time For Next Iteration!



CASE STUDY: MINIMAL VIABLE PRODUCT

A Few Iterations Later…



CASE STUDY: MINIMAL VIABLE PRODUCT - MATURING THE PRODUCT

• Enrich 
- Learn From Feedback 

• Expand 
- Increase Exposure In Existing Markets 
- Investigate New Markets 

• Consolidate 
- Dealt with Tech Debt



CASE STUDY: MINIMAL VIABLE PRODUCT - GROWING PAINS

• Success Breeds Success 
- Pressure to Add Volume 
- Relatively Easy to Realise 

• Consequences: 
- Low Frequency Problems More Obvious 
- Stressed Services Behave Unpredictably 
- Effects May Not Be Immediately Visible 

• Often Impossible To Reverse An Expansion 
• Resolutions 
- Expand In Cycles 
- Be Open With Incidents And Failures



CASE STUDY: MINIMAL VIABLE PRODUCT - GROWING PAINS

• Success Inspires Others 
- Experience is Valued 
- Team Members Will Move On 

• Resolutions 
- Spread the Knowledge 
- Documentation 
- Avoid Specialists 
- Plan For Transition



CASE STUDY: MINIMAL VIABLE PRODUCT - GROWING PAINS

• Design Compromise 
- Simplicity Allows For Rapid Change 
- Firefighting Blurs The Vision 

• Consequences 
- Services With Unclear Roles 
- Complicated Call Chains 
- Differing Granularity In Services 

• Creeping Complexity 
- Solution Becomes Opaque To The Team 

• Resolutions 
- Engage Whole Team in Design Decisions 
- Document a Target Architecture 
- Allow Time To Refactor



CASE STUDY: MINIMAL VIABLE PRODUCT - GROWING PAINS

• In Reality: 
- MVP Delivered By Many (Temporary) Teams 
- Custom Code In Established Services 
- Dependency on Monolith 
- Manual Routines 

• Consequences 
- MVP Decisions Made In Other Domains 
- Conflicting Priorities In Other Teams 
- Divergent Tech Stacks Hinder Ownership 
- Increasingly Longer To Deliver 

• Resolutions 
- Assimilate Functions That Fit 
- Propose Architectural Change Where They Do Not



SUMMARY

• Microservices Enable Rapid Delivery Of MVPs 
- Relatively Low Risk 
- Iterative Expansion 
- Optimise Product using Feedback 
- In Parallel To Existing Organisational Structures 

• Maturity Exposes Problems 
- Similar To Monolith - Complex, Opaque, Slow 
- Requires A Mature Team To Address 
- May Require Wider Architectural Change… 
- …Which May Need Organisational Change



WHAT ABOUT 
THE MONOLITH?



WHAT ABOUT THE MONOLITH?

• Started To Break Up The Monolith 
- …But Only Partially 
- …Maybe Never Completely 

• Requires (Significant) Investment in the Monolith 
- Needs Competent and Motivated Teams 

• Role of the Monolith Changed 
- Narrower Scope 
- Higher Specialisation 
- Challenges Perceptions



SUMMARY

• Microservices Migration is Powerful 
- Can Deliver More, Faster and Frequently 
- Strategies Available To Reduce Risk 

• Best Practice Software Development Still Required 
- Avoid The Distributed Monolith 

• Microservices Adoption Affects The Organisation 
- Retaining Agility is Challenging 
- Evolve The Organisation Using Team Feedback 

• Monolith Still Has A Significant Role To Play


