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ICONCURRENCY IS HARD

‘@!B\! Davidlohr Bueso m
gy, (@cavidlonr
A programmer had a problem. He thought to

himself, "I know, I'll solve it with threads!”. has
Now problems. two he
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ICONCURRENCY CONSTRUCTS GALORE

« We have seen many concurrency constructs: callbacks, threads, futures, executors, ...

o It's easier than ever to create massive amounts of zhreads: Go (goroutines), Kotlin
(coroutines), Java (virtual threads), ...

» We need good constructs to keep this potential chaos under control

o Structured concurrency is a new(ish) alternative: today we'll look at how it can be used
in Java and Kotlin
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ISTRUCTURED CONCURRENCY
Wikipedia:
1hHe encapsu[az‘ian af concurrent threads with

control ﬂaw constructs that have clear entry and exit points and

ensure that all spawned threads have completed before exit.
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ISTRUCTURED CONCURRENCY HISTORY

« Martin Sustrik in C library /6dill (2016)

o Popularised by Nathaniel J. Smith (Python) in Notes on structured concurrency, or: Go
statement considered harmjful (2018)

o Term picked up by Kotlin designers for their coroutine implementation (2018)
o Library implementations now exist in many languages

e Java 23 includes the third preview of JEP 480: Structured Concurrency
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] JAVA CONCURRENCY EXAMPLE

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
var theUser = user.get(); // Join first thread
var theOrder = order.get(); / Join second thread
return new Response(theUser, theOrder);
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] JAVA CONCURRENCY EXAMPLE

Response handle() {
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ICONCURRENCY GIVES US DIFFICULT PROBLEMS

e We have multiple problems:
- Cancelling: when a parent thread dies, the children are not cancelled.
- Error handling: who should a thread report to if the parent thread is goner
- Monitoring: there is nothing in the runtime environment indicating a relationship
between these threads.

o Tricky problems, and a solution often obscures the real intention of the code.
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IOUTSIDE PERSPECTIVE: WHAT THREADS DO MY FUNCTION CALLS LEAVE BEHIND?
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IHISTORIC BACK REFERENCE

SRR

Notes on structured concurrency, or: Go
statement considered harmful

Go To Statement Considered Harmful

AT
el

Ke,y Words and Phrases: go to statement, jump instruction,
branch 1nstruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24 |

- EDITOR:

For a number of years I have been familiar with the observation

. that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state- '

ment should be abollshed from all ““higher level’’ programmine
DIJKSTRA 1968

Every concurrency API needs a way to run code concurrently. Here's some examples of what that looks lik
using different APIs:

TG oo e e

%

go myfunc(); // Golang
pthread_create(&thread_id, NULL, &myfunc); /% C with POSIX threads x/
spawn(modulename, myfuncname, []) % Erlang

threading.Thread(target=myfunc).start() # Python with threads

asyncio.create_task(myfunc()) # Python with asyncio

SMITH 2018
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IGOTO DESTROYS LOCAL ANALYSIS

SEQUENTIAL CODE GOTO
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ISTRUCTURED PROGRAMMING REQUIRES A SINGLE EXIT POINT

|IF/ELSE LOOP

METHOD CALL

v
‘L\/
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ISPAWNING OF NEW THREADS RESEMBLES GOTO

GOTO NEW THREAD
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ICONCURRENCY SHOULD BE LIKE STRUCTURED PROGRAMMING

\
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IYET ANOTHER PERSPECTIVE: ADAPTING TO OUR STRENGTHS

The brain is good at reasoning about static structures but bad at parallel processes,
so let's make the processes follow the structure of the code.
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ISTRUCTURED CONCURRENCY: SCOPE OBJECT

e Structured concurrency introduces a scope object:
- all threads started through the scope
- the scope outlives all its child threads
- the scope takes care of cancellation
- the scope leaves no threads behind in case of exceptions
- scopes can be nested
« We get:
- Automatic resource management: never lose a thread
- Automatic error handling: never lose an exception

- A visible, hierarchical relation between all running threads
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ICONCURRENCY EXAMPLE REVISITED

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
return new Response(user.get(), order.get());

}

Response handle() {
try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
var user = scope.fork(() -> findUser());
var order = scope.fork(() -> fetchOrder());

scope.join();
return new Response(user.get(), order.get()); suspend fun handle(): Response =
) coroutineScope {
\ val user = async { findUsen() }
val order = async { fetchOrder() }
Java Structured Concurrency Response(user.await(), order.await())

}

Kotlin coroutines

CALLISTA



IDEMO
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I SCOPED VALUES

e We need to share data between our threads:
- but we want to keep the hierarchical structure and the scope
- we want to make sure that we control the life-cycle of data in our threads

» Kotlin uses a coroutine context: a map where parent threads can put values only visible

to child threads
e Java gets something very similar with JEP 429 in Java 23: Scoped Values
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JUAVA: THREAD LOCAL VS. SCOPED VALUES

e | hread local variables have some issues:

- No concept of scope

- Mutable
- Unbounded lifetime

- Expensive inheritance

» Java scoped values are designed to work with structured concurrency:
- The scope and lifetime of a value is clearly expressed in code structure
- Immutable data is shared with callees and and child threads

- Immutability makes resource sharing and thread creation much cheaper
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ISCOPED VALUE EXAMPLE

final static ScopedValue<String> CONTEXT = ScopedValue.newlnstance();

private static void parent() {
ScopedValue.where(CONTEXT, "myContext").run(() -> {
try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
var result1 = scope.fork(() -> childComponenti());
var result2 = scope.fork(() -> childComponent2());

};
¥

static String childComponenti() throws InterruptedException {
var context = CONTEXT.get();

}

static String childComponent2() throws InterruptedException {
var context = CONTEXT.get();
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ICONCLUSION

e Structured concurrency libraries are now in many languages: C, Python, C#, Rust, Scala,

Go, ...

o A few languages have it as part of the standard distribution: Kotlin, Swift and (soon)
Java.

o A/l concurrency in a language could be structured concurrency - perhaps we will see new
languages adopting this approach in the future?
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