
CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

STRUCTURED CONCURRENCY

JESPER HOLMBERG

CONCURRENCY IS HARD

CONCURRENCY CONSTRUCTS GALORE

• We have seen many concurrency constructs: callbacks, threads, futures, executors, ...
• It's easier than ever to create massive amounts of threads: Go (goroutines), Kotlin

(coroutines), Java (virtual threads), ...
• We need good constructs to keep this potential chaos under control
• Structured concurrency is a new(ish) alternative: today we'll look at how it can be used

in Java and Kotlin

STRUCTURED CONCURRENCY

Wikipedia:
The encapsulation of concurrent threads with

control flow constructs that have clear entry and exit points and
 ensure that all spawned threads have completed before exit.

STRUCTURED CONCURRENCY HISTORY

• Martin Sustrik in C library libdill (2016)
• Popularised by Nathaniel J. Smith (Python) in Notes on structured concurrency, or: Go

statement considered harmful (2018)
• Term picked up by Kotlin designers for their coroutine implementation (2018)
• Library implementations now exist in many languages
• Java 23 includes the third preview of JEP 480: Structured Concurrency

JAVA CONCURRENCY EXAMPLE

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 var theUser = user.get(); // Join first thread
 var theOrder = order.get(); // Join second thread
 return new Response(theUser, theOrder);
} handle()

getUser() fetchOrder()

return

JAVA CONCURRENCY EXAMPLE

handle()

Exception! fetchOrder()

return

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 var theUser = user.get(); // Join first thread
 var theOrder = order.get(); // Join second thread
 return new Response(theUser, theOrder);
}

JAVA CONCURRENCY EXAMPLE

handle()

Exception! fetchOrder()

Exception!

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 var theUser = user.get(); // Join first thread
 var theOrder = order.get(); // Join second thread
 return new Response(theUser, theOrder);
}

JAVA CONCURRENCY EXAMPLE

handle()

Exception! fetchOrder()

Exception!

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 var theUser = user.get(); // Join first thread
 var theOrder = order.get(); // Join second thread
 return new Response(theUser, theOrder);
}

JAVA CONCURRENCY EXAMPLE

Interrupt!

getUser() fetchOrder()

return

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 var theUser = user.get(); // Join first thread
 var theOrder = order.get(); // Join second thread
 return new Response(theUser, theOrder);
}

JAVA CONCURRENCY EXAMPLE

Interrupt!

getUser() fetchOrder()

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 var theUser = user.get(); // Join first thread
 var theOrder = order.get(); // Join second thread
 return new Response(theUser, theOrder);
}

JAVA CONCURRENCY EXAMPLE

handle()

getUser() Exception!

return

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 var theUser = user.get(); // Join first thread
 var theOrder = order.get(); // Join second thread
 return new Response(theUser, theOrder);
}

CONCURRENCY GIVES US DIFFICULT PROBLEMS

•We have multiple problems:
-Cancelling: when a parent thread dies, the children are not cancelled.
-Error handling: who should a thread report to if the parent thread is gone?
-Monitoring: there is nothing in the runtime environment indicating a relationship
between these threads.

•Tricky problems, and a solution often obscures the real intention of the code.

OUTSIDE PERSPECTIVE: WHAT THREADS DO MY FUNCTION CALLS LEAVE BEHIND?

OUTSIDE PERSPECTIVE: WHAT THREADS DO MY FUNCTION CALLS LEAVE BEHIND?

call
handle()

OUTSIDE PERSPECTIVE: WHAT THREADS DO MY FUNCTION CALLS LEAVE BEHIND?

call
handle()my_code

...

...

HISTORIC BACK REFERENCE

SMITH 2018

DIJKSTRA 1968

GOTO DESTROYS LOCAL ANALYSIS

sequential gotoSEQUENTIAL CODE GOTO

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful

STRUCTURED PROGRAMMING REQUIRES A SINGLE EXIT POINT

......

if loop function
callIF/ELSE LOOP METHOD CALL

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful

SPAWNING OF NEW THREADS RESEMBLES GOTO

gogotoGOTO NEW THREAD

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful

CONCURRENCY SHOULD BE LIKE STRUCTURED PROGRAMMING

...

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful

YET ANOTHER PERSPECTIVE: ADAPTING TO OUR STRENGTHS

The brain is good at reasoning about static structures but bad at parallel processes,
 so let's make the processes follow the structure of the code.

STRUCTURED CONCURRENCY: SCOPE OBJECT

• Structured concurrency introduces a scope object:
- all threads started through the scope
- the scope outlives all its child threads
- the scope takes care of cancellation
- the scope leaves no threads behind in case of exceptions
- scopes can be nested

• We get:
- Automatic resource management: never lose a thread
- Automatic error handling: never lose an exception
- A visible, hierarchical relation between all running threads

CONCURRENCY EXAMPLE REVISITED

Response handle() {
 var user = executorService.submit(() -> findUser());
 var order = executorService.submit(() -> fetchOrder());
 return new Response(user.get(), order.get());
}

Response handle() {
 try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
 var user = scope.fork(() -> findUser());
 var order = scope.fork(() -> fetchOrder());
 scope.join();
 return new Response(user.get(), order.get());
 }
}

Java Structured Concurrency

suspend fun handle(): Response =
 coroutineScope {
 val user = async { findUser() }
 val order = async { fetchOrder() }
 Response(user.await(), order.await())
 }

Kotlin coroutines

DEMO

SCOPED VALUES

• We need to share data between our threads:
- but we want to keep the hierarchical structure and the scope
- we want to make sure that we control the life-cycle of data in our threads

• Kotlin uses a coroutine context: a map where parent threads can put values only visible
to child threads

• Java gets something very similar with JEP 429 in Java 23: Scoped Values

JAVA: THREAD LOCAL VS. SCOPED VALUES

• Thread local variables have some issues:
- No concept of scope
- Mutable
- Unbounded lifetime
- Expensive inheritance

• Java scoped values are designed to work with structured concurrency:
- The scope and lifetime of a value is clearly expressed in code structure
- Immutable data is shared with callees and and child threads
- Immutability makes resource sharing and thread creation much cheaper

SCOPED VALUE EXAMPLE

final static ScopedValue<String> CONTEXT = ScopedValue.newInstance();

private static void parent() {
 ScopedValue.where(CONTEXT, "myContext").run(() -> {
 try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
 var result1 = scope.fork(() -> childComponent1());
 var result2 = scope.fork(() -> childComponent2());
 ...
 }
 });
}

static String childComponent1() throws InterruptedException {
 var context = CONTEXT.get();
 ...
}

static String childComponent2() throws InterruptedException {
 var context = CONTEXT.get();
 ...
}

CONCLUSION

• Structured concurrency libraries are now in many languages: C, Python, C#, Rust, Scala,
Go, ...

• A few languages have it as part of the standard distribution: Kotlin, Swift and (soon)
Java.

• All concurrency in a language could be structured concurrency - perhaps we will see new
languages adopting this approach in the future?

