STRUCTURED CONCURRENCY

JESPER HOLMBERG

CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

CLALLISTA

ICONCURRENCY IS HARD

‘@!B\! Davidlohr Bueso m
gy, (@cavidlonr
A programmer had a problem. He thought to

himself, "I know, I'll solve it with threads!”. has
Now problems. two he

12:16 AM - Jan 9, 2013

CALLISTA

ICONCURRENCY CONSTRUCTS GALORE

« We have seen many concurrency constructs: callbacks, threads, futures, executors, ...

o It's easier than ever to create massive amounts of zhreads: Go (goroutines), Kotlin
(coroutines), Java (virtual threads), ...

» We need good constructs to keep this potential chaos under control

o Structured concurrency is a new(ish) alternative: today we'll look at how it can be used
in Java and Kotlin

CALLISTA

ISTRUCTURED CONCURRENCY
Wikipedia:
1hHe encapsu[az‘ian af concurrent threads with

control ﬂaw constructs that have clear entry and exit points and

ensure that all spawned threads have completed before exit.

CALLISTA

ISTRUCTURED CONCURRENCY HISTORY

« Martin Sustrik in C library /6dill (2016)

o Popularised by Nathaniel J. Smith (Python) in Notes on structured concurrency, or: Go
statement considered harmjful (2018)

o Term picked up by Kotlin designers for their coroutine implementation (2018)
o Library implementations now exist in many languages

e Java 23 includes the third preview of JEP 480: Structured Concurrency

CALLISTA

] JAVA CONCURRENCY EXAMPLE

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
var theUser = user.get(); // Join first thread
var theOrder = order.get(); / Join second thread
return new Response(theUser, theOrder);

CALLISTA

] JAVA CONCURRENCY EXAMPLE

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
var theUser = user.get(); // Join first thread
var theOrder = order.get(); // Join second thread
return new Response(theUser, theOrder);

Exception!

CALLISTA

] JAVA CONCURRENCY EXAMPLE

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
var theUser = user.get(); // Join first thread
var theOrder = order.get(); / Join second thread
return new Response(theUser, theOrder);

cheptionD

__A

Exception!

CALLISTA

] JAVA CONCURRENCY EXAMPLE

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
var theUser = user.get(); // Join first thread
var theOrder = order.get(); / Join second thread
return new Response(theUser, theOrder);

(ExceptionD

__A

Exception!

CALLISTA

] JAVA CONCURRENCY EXAMPLE

Response handle() {

var user = executorService.submit(() -> findUser());

var order = executorService.submit(() -> fetchOrder());

var theUser = user.get(); // Join first thread

var theOrder = order.get(); / Join second thread

return new Response(theUser, theOrder); |nterru ptl

CALLISTA

] JAVA CONCURRENCY EXAMPLE

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
var theUser = user.get(); // Join first thread
var theOrder = order.get(); / Join second thread
return new Response(theUser, theOrder);

\ Interrupt!

CALLISTA

] JAVA CONCURRENCY EXAMPLE

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
var theUser = user.get(); // Join first thread
var theOrder = order.get(); / Join second thread
return new Response(theUser, theOrder);

(ExceptionD

CALLISTA

ICONCURRENCY GIVES US DIFFICULT PROBLEMS

e We have multiple problems:
- Cancelling: when a parent thread dies, the children are not cancelled.
- Error handling: who should a thread report to if the parent thread is goner
- Monitoring: there is nothing in the runtime environment indicating a relationship
between these threads.

o Tricky problems, and a solution often obscures the real intention of the code.

CALLISTA

IOUTSIDE PERSPECTIVE: WHAT THREADS DO MY FUNCTION CALLS LEAVE BEHIND?

)handle()

-~

'\ getUser() | . fetchOrder())

| return K

CALLISTA

IOUTSIDE PERSPECTIVE: WHAT THREADS DO MY FUNCTION CALLS LEAVE BEHIND?

)handle()

-~

" getUser() | fetchOrder() |
call)

handle() -\ K

CALLISTA

IOUTSIDE PERSPECTIVE: WHAT THREADS DO MY FUNCTION CALLS LEAVE BEHIND?

CALLISTA

IHISTORIC BACK REFERENCE

SRR

Notes on structured concurrency, or: Go
statement considered harmful

Go To Statement Considered Harmful

AT
el

Ke,y Words and Phrases: go to statement, jump instruction,
branch 1nstruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24 |

- EDITOR:

For a number of years I have been familiar with the observation

. that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state- '

ment should be abollshed from all ““higher level’’ programmine
DIJKSTRA 1968

Every concurrency API needs a way to run code concurrently. Here's some examples of what that looks lik
using different APIs:

TG oo e e

%

go myfunc(); // Golang
pthread_create(&thread_id, NULL, &myfunc); /% C with POSIX threads x/
spawn(modulename, myfuncname, []) % Erlang

threading.Thread(target=myfunc).start() # Python with threads

asyncio.create_task(myfunc()) # Python with asyncio

SMITH 2018

?:'; s
i
i
G
i
?3::_.
.
Re,
i
i
"
o
?‘a
l‘}.
4

CALLISTA

IGOTO DESTROYS LOCAL ANALYSIS

SEQUENTIAL CODE GOTO

CALLISTA

https://vorpus.ora/blog/notes-on-structured-concurrency-or-go-statement-co

ISTRUCTURED PROGRAMMING REQUIRES A SINGLE EXIT POINT

|IF/ELSE LOOP

METHOD CALL

v
‘L\/

CALLISTA

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-cor

ISPAWNING OF NEW THREADS RESEMBLES GOTO

GOTO NEW THREAD

CALLISTA

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-cor

ICONCURRENCY SHOULD BE LIKE STRUCTURED PROGRAMMING

\

CALLISTA

https://vorpus.ora/blog/notes-on-structured-concurrency-or-go-statement-cor

IYET ANOTHER PERSPECTIVE: ADAPTING TO OUR STRENGTHS

The brain is good at reasoning about static structures but bad at parallel processes,
so let's make the processes follow the structure of the code.

CALLISTA

ISTRUCTURED CONCURRENCY: SCOPE OBJECT

e Structured concurrency introduces a scope object:
- all threads started through the scope
- the scope outlives all its child threads
- the scope takes care of cancellation
- the scope leaves no threads behind in case of exceptions
- scopes can be nested
« We get:
- Automatic resource management: never lose a thread
- Automatic error handling: never lose an exception

- A visible, hierarchical relation between all running threads

CALLISTA

ICONCURRENCY EXAMPLE REVISITED

Response handle() {
var user = executorService.submit(() -> findUser());
var order = executorService.submit(() -> fetchOrder());
return new Response(user.get(), order.get());

}

Response handle() {
try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
var user = scope.fork(() -> findUser());
var order = scope.fork(() -> fetchOrder());

scope.join();
return new Response(user.get(), order.get()); suspend fun handle(): Response =
) coroutineScope {
\ val user = async { findUsen() }
val order = async { fetchOrder() }
Java Structured Concurrency Response(user.await(), order.await())

}

Kotlin coroutines

CALLISTA

IDEMO

CALLISTA

I SCOPED VALUES

e We need to share data between our threads:
- but we want to keep the hierarchical structure and the scope
- we want to make sure that we control the life-cycle of data in our threads

» Kotlin uses a coroutine context: a map where parent threads can put values only visible

to child threads
e Java gets something very similar with JEP 429 in Java 23: Scoped Values

CALLISTA

JUAVA: THREAD LOCAL VS. SCOPED VALUES

e | hread local variables have some issues:

- No concept of scope

- Mutable
- Unbounded lifetime

- Expensive inheritance

» Java scoped values are designed to work with structured concurrency:
- The scope and lifetime of a value is clearly expressed in code structure
- Immutable data is shared with callees and and child threads

- Immutability makes resource sharing and thread creation much cheaper

CALLISTA

ISCOPED VALUE EXAMPLE

final static ScopedValue<String> CONTEXT = ScopedValue.newlnstance();

private static void parent() {
ScopedValue.where(CONTEXT, "myContext").run(() -> {
try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {
var result1 = scope.fork(() -> childComponenti());
var result2 = scope.fork(() -> childComponent2());

};
¥

static String childComponenti() throws InterruptedException {
var context = CONTEXT.get();

}

static String childComponent2() throws InterruptedException {
var context = CONTEXT.get();

CALLISTA

ICONCLUSION

e Structured concurrency libraries are now in many languages: C, Python, C#, Rust, Scala,

Go, ...

o A few languages have it as part of the standard distribution: Kotlin, Swift and (soon)
Java.

o A/l concurrency in a language could be structured concurrency - perhaps we will see new
languages adopting this approach in the future?

CALLISTA

