
CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

FASTER STARTUP WITH
SPRING BOOT AND CRaC
(Coordinated Restore at Checkpoint)

MAGNUS LARSSON

Also works
with Quarkus

and Micronaut!

part 3 - Automated build process, TBD…

AGENDA

• What’s the problem?

• The CRaC concept

• From concept to production

• Alternatives

• Summary

WHAT’S THE PROBLEM?

• Startup times...
- Restarts

§ E.g. after an update or crash

- Scaling
§ E.g. autoscaling, including scale to zero

• Demo
- Startup a Spring Boot application

§ In cloud
§ Pay as you go
§ Transient application
§ Scale to zero

DEMO ENVIRONMENT

Product Composite
[microservice]

Review
[microservice]

MySQL
Product

[microservice]
MongoDB

Recommendation
[microservice]

MongoDB

Kafka - Event Streaming

API Consumer
Demo environment
• Kubernetes,

local Minikube

• KEDA & HTTP add-on

• Review service
scales to zero after
15s inactivity

Component Legend

Always on 24/7

Transient
HTTP

HTTP HTTP HTTP

DEMO #1, STARTUP OF A TRADITIONAL JAVA VM APPLICATION

THE CRaC CONCEPT

• CRaC is an OpenJDK project

• CRaC = Coordinated Restore at Checkpoint

• Checkpoint
- Dump memory of a running (warmed up) Java app to file

• Restore
- Restart the Java app by loading the file into the memory

• Demo #2
1. Jar application startup time
2. Make a checkpoint
3. Restore time from checkpoint

DEMO #2, BASIC CHECKPOINT AND RESTORE

Normal start of application
java -jar build/libs/hello-crac-0.0.1-SNAPSHOT.jar

Create checkpoint (automatically)
java -Dspring.context.checkpoint=onRefresh \

-XX:CRaCCheckpointTo=checkpoint \
-jar build/libs/hello-crac-0.0.1-SNAPSHOT.jar

Restore application from checkpoint
java -XX:CRaCRestoreFrom=checkpoint

FROM CONCEPT TO PRODUCTION

1. …
2. …
3. …
4. …
5. …
6. …
7. Demo

FROM CONCEPT TO PRODUCTION

1. Only works on Linux
2. …
3. …
4. …
5. …
6. …
7. Demo

ONLY WORKS ON LINUX

• CRaC depends on a Linux feature
- CRIU - Checkpoint/Restore In Userspace

• Approaches
1. Reusable: Create Docker images of CRaC-enabled applications
2. Dedicated: Infrastructure-specific solutions, e.g., AWS Lambda SnapStart

• This presentation is about creating reusable Docker images

• CRIU requires extra Linux capabilities
- Checkpoint: CHECKPOINT_RESTORE and SYS_PTRACE
- Restore: CHECKPOINT_RESTORE
- Do not use –privileged in Docker or Kubernetes!

FROM CONCEPT TO PRODUCTION

1. Only works on Linux
2. Warmup
3. …
4. …
5. …
6. …
7. Demo

WARMUP

• Ensure application classes are loaded before the checkpoint
- Execute relevant test cases

• High-performance applications might require JIT - compilation
- When are my application classes JIT compiled?

§ Use java -XX:+PrintCompilation

§ Log output
...com.example.hello_crac.MyRestController::helloRequest (13 bytes)

WARMUP

• Training environment
- Separated from the Production environment
- Similar in terms of external connections

§ APIs, Databases, message systems…
§ Relevant test data

- Approaches
§ Permanent environment
§ Temporary environment

▸Docker Compose
▹Locally or in a CI pipeline

The training landscape
[System boundary]

Recommendation
[microservice]

Review
[microservice]

Product
[microservice]

Product Composite
[microservice]

MongoDB

MongoDB

MySQL

$ docker compose up -d
$./createTestdata.bash

Jar App
[warming up…]

Warning
All in-memory configuration will
be stored in the Docker image,
including sensitive information.

FROM CONCEPT TO PRODUCTION

1. Only works on Linux
2. Warmup
3. State and connections

4. …
5. …
6. …
7. Demo

STATE AND CONNECTIONS

• Before checkpoint, open connections must be closed
- Files, HTTP, databases, message brokers, …

• At restore, all connections must be restored

• In-memory state, e.g. caches, must be reset

• CRaC-interface for receiving checkpoint/restore notifications
package org.crac;

public interface Resource {
void beforeCheckpoint(...);
void afterRestore(...);

}

Handled by the 3PP
libraries used for the
connectivity and state
management

See next slides…

FROM CONCEPT TO PRODUCTION

1. Only works on Linux
2. Warmup
3. State and connections
4. Configuration
5. …
6. …
7. Demo

CONFIGURATION

• Runtime-specific configuration must be reloaded at restore
- Hostnames
- Connections
- Credentials

• Problem: Spring Boot application loads config at startup

• Spring Cloud Commons to the rescue
@RefreshScope
@Component
public class ProductCompositeIntegration {

@Autowired
public ProductCompositeIntegration(

@Value("${app.product-service.host}") String productServiceHost,
@Value("${app.product-service.port}") int productServicePort,

CONFIGURATION

• Provided at build time: application.yml

• Provided at restore: runtime-configuration.yml

spring:
config.import: file:./runtime-configuration.yml

app:
product-service:

host: product-prod
port: 8080

FROM CONCEPT TO PRODUCTION

1. Only works on Linux
2. Warmup
3. State and connections
4. Configuration
5. 3PP libraries
6. …
7. Demo

3PP LIBRARIES

• 3PP libraries must be CRaC-aware
- Handle external connections, state, and configuration
- Implement the CRaC-interface org.crac.Resource

• Not all 3PP libraries are CRaC-friendly [yet]
- To the rescue: spring-lifecycle-smoke-tests

https://github.com/spring-projects/spring-lifecycle-smoke-tests

3PP LIBRARIES

• State October 2024:
- SpringDataJPA and Hibernate, see blog post #1
- MySQL Connect, see blog post #2
- RestTemplate and RestClient, see blog post #2
- Spring Cloud Stream, see blog post #3

- MongoDB Client, see blog post #2

https://callistaenterprise.se/blogg/teknik/2024/07/01/SpringBoot-with-CRaC-part1-automatic-checkpoint/
https://callistaenterprise.se/blogg/teknik/2024/10/16/SpringBoot-with-CRaC-part2-on-demand-checkpoint/
https://callistaenterprise.se/blogg/teknik/2024/10/16/SpringBoot-with-CRaC-part2-on-demand-checkpoint/
https://callistaenterprise.se/blogg/teknik/2024/10/16/SpringBoot-with-CRaC-part2-on-demand-checkpoint/

FROM CONCEPT TO PRODUCTION

1. Only works on Linux
2. Warmup
3. State and connections
4. Configuration
5. 3PP libraries
6. Building a CRaC image
7. Demo

BUILDING A CRaC IMAGE

• Use on-demand checkpoints instead
- A bit more complex…

• Automated checkpoint not so useful…
- No proper warmup
- Configuration can’t be changed at runtime

Normal start of application
java -jar build/libs/hello-crac-0.0.1.jar

Create checkpoint(automatically)
java -Dspring.context.checkpoint=onRefresh \

-XX:CRaCCheckpointTo=checkpoint \
-jar build/libs/hello-crac-0.0.1.jar

Restore application from checkpoint
java -XX:CRaCRestoreFrom=checkpoint

BUILDING A CRaC IMAGE

What needs to be done:
1. Optional: Start training landscape and populate test data
2. Build jar-based application
3. Warm up the application
4. Take checkpoint
5. Package CRaC-based application
6. Test CRaC-based application

BUILDING A CRaC IMAGE

docker compose up -d ./createTestdata.bash

./gradlew build docker build

jar
image

docker run –d
-v /checkpoint:/checkpoint ./warmup.bash

docker exec checkpoint

checkpoint

docker build
image

crac

docker run –d
-v /config.yml:/config.yml ./runTests.bash

BUILDING A CRaC IMAGE – DEMO #3

$ hello-crac/build-crac-image.bash
...
| #1: 14:18:27 - Building... |
| #2: 14:18:30 - SKIP Start training landscape and prepare testdata... |
| #3: 14:18:30 - Warmup... |
... Started DemoApplication in 1.418 seconds (process running for 1.732)
| #4: 14:18:33 - Checkpoint... |
| #5: 14:18:37 - Building CRaC image... |
| #6: 14:18:38 - Test CRaC image... |
... Spring-managed restart completed (restored JVM running for 88 ms)
| #7: 14:18:40 - CRaC image built and tested successfully! 🏁 |
...
Execution time: 12.36s

$

part 3 - Automated build process, TBD…

For details and source code, see:

FROM CONCEPT TO PRODUCTION

1. Only works on Linux
2. Warmup
3. State and connections
4. Configuration
5. 3PP libraries
6. Building a CRaC image
7. Demo

RECAP: DEMO ENVIRONMENT

Product Composite
[microservice]

Review
[microservice]

MySQL
Product

[microservice]
MongoDB

Recommendation
[microservice]

MongoDB

Kafka - Event Streaming

API Consumer
Demo environment
• Kubernetes,

local Minikube

• KEDA & HTTP add-on

• Review service
scales to zero after
15s inactivity

Component Legend

Always on 24/7

Transient
HTTP

HTTP HTTP HTTP

DEMO #4, STARTUP OF A CRaC’ed APPLICATION

Compare with jar-app:

Technology Spring Boot
support

Complexity Faster Startup More information

GraalVM native compile
- Spring AOT

Spring Boot 3.0
- November 2022

Rather complex
constraints on
source code

Looong compile times

≈20 times faster https://callistaenterpris
e.se/assets/presentati
oner/cadec2023-
spring.pdf

CRaC Spring Boot 3.2
- November 2023

Relatively moderate
code and configuration
changes

≈10 times faster https://callistaenterpris
e.se/blogg/teknik/2024
/10/16/SpringBoot-
with-CRaC-part2-on-
demand-checkpoint/

App CDS
Project Layden

Spring Boot 3.3
- May 2024

No impact on source code,
only configuration

≈2 times faster https://bell-
sw.com/blog/how-to-
use-cds-with-spring-
boot-applications/

ALTERNATIVES

https://callistaenterprise.se/assets/presentationer/cadec2023-spring.pdf
https://callistaenterprise.se/assets/presentationer/cadec2023-spring.pdf
https://callistaenterprise.se/assets/presentationer/cadec2023-spring.pdf
https://callistaenterprise.se/assets/presentationer/cadec2023-spring.pdf
https://bell-sw.com/blog/how-to-use-cds-with-spring-boot-applications/
https://bell-sw.com/blog/how-to-use-cds-with-spring-boot-applications/
https://bell-sw.com/blog/how-to-use-cds-with-spring-boot-applications/
https://bell-sw.com/blog/how-to-use-cds-with-spring-boot-applications/

SUMMARY

• 10 times faster startup!
• Can be very useful in some scenarios
- E.g. Scale to Zero

• Requires
- Handling state and connections
- Reload configuration at restore
- An automated build process

§ Including warmup before the checkpoint

• Not all 3PP libraries are (yet) CRaC-friendly

• If CRaC is not feasible at this time, try App CDS!

WANT TO KNOW MORE?

• Blog series - Faster startup with Spring Boot and CRaC
- Part 1 - Automatic checkpoint
- Part 2 - Warmup and configuration
- Part 3 - Automated build process, TBD…

§ Follow me on Linkedin to be notified!
https://www.linkedin.com/in/magnuslarssoncallista/

• Regarding App CDS:
- How to use CDS with Spring Boot applications

https://callistaenterprise.se/blogg/teknik/2024/07/01/SpringBoot-with-CRaC-part1-automatic-checkpoint/
https://callistaenterprise.se/blogg/teknik/2024/10/16/SpringBoot-with-CRaC-part2-on-demand-checkpoint/
https://www.linkedin.com/in/magnuslarssoncallista/
https://bell-sw.com/blog/how-to-use-cds-with-spring-boot-applications/

SUMMARY – QUESTIONS?

• 10 times faster startup!
• Can be very useful in some scenarios
- E.g. Scale to Zero

• Requires
- Handling state and connections
- Reload configuration at restore
- An automated build process

§ Including warmup before the checkpoint

• Not all 3PP libraries are (yet) CRaC-friendly

• If CRaC is not feasible at this time, try App CDS!

