
CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

THE DOMAIN IN FOCUS

BJORN.BESKOW@CALLISTAENTERPRISE.SE

PORTS, ADAPTERS AND
HEXAGONAL ARCHITECTURE

mailto:bjorn.beskow@callistaenterprise.se

RECURRING THEME: SOFTWARE COMPLEXITY GROWS OVER TIME

THE ROOT OF EVIL: UNMANAGED DEPENDENCIES

ARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

ARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

ARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

ARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

ARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

AGENDA

• The problem:
- Taming complexity by managing

dependencies
• Architectural Layering
- The traditional way
- Why does it hurt?

• Hexagons or Ports and Adapters
• Code examples
• Conclusions

DOMAIN-DRIVEN DESIGN

DESIGN PRINCIPLES

• SOLID
- Single Responsibility Principle
- Open/Closed Principle
- Liskov Substitution Principle
- Interface Segregation Principle
- Dependency Inversion Principle

• Architectural Layering

TRADITIONAL 1-DIMENSIONAL LAYERING

TRADITIONAL 1-DIMENSIONAL LAYERING

TRADITIONAL LAYERING - LEAKING PRESENTATION DETAILS

public class Product {

 @JsonProperty("productId")
 private Long productId;

 @NotNull
 @Size(max = 255)
 @JsonProperty("name")
 private String name;

 @NotNull
 @Size(max = 255)
 @JsonProperty("articleId")
 private String articleId;

 @NotNull
 @JsonProperty("inventory")
 private Long inventory;

TRADITIONAL 1-DIMENSIONAL LAYERING

TRADITIONAL LAYERING - LEAKING PERSISTENCE DETAILS

@Entity
@Table(name = "product")
public class ProductVariant {

 @Id
 @Column(name = "id", unique = true, nullable = false, updatable = false)
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "product_seq")
 @SequenceGenerator(name = "product_seq", sequenceName = "product_seq")
 protected Long productId;

 @Version
 @Column(name = "version", nullable = false,
 columnDefinition = "int default 0")
 protected Integer version;

LAYERING

SOLID: SINGLE RESPONSIBILITY PRINCIPLE

“A class should have one,
 and only one,
 reason to change”

LAYERING

SOLID: DEPENDENCY INVERSION PRINCIPLE

“High-level modules should not depend
 on low-level modules.
 Both should depend on abstractions.
 Abstractions should not depend on details.
 Details should depend on abstractions.”

LAYERING

INVERTING THE DEPENDENCY

SOLID: DEPENDENCY INVERSION PRINCIPLE

“High-level modules should not depend
 on low-level modules.
 Both should depend on abstractions.
 Abstractions should not depend on details.
 Details should depend on abstractions.”

INVERTING THE DEPENDENCY

ADDING PORTS

ADDING ADAPTERS

SOLID: INTERFACE SEGREGATION PRINCIPLE

“A client should never be forced to
 implement an interface that it doesn’t use,
 or clients shouldn’t be forced to depend on
 methods they do not use.”

MULTIPLE PORTS

MULTIPLE PORTS - IN AND OUT

HEXAGONAL ARCHITECTURE

• a.k.a.
- “Ports and Adapters” or
- “Onion Architecture” or
- “Clean Architecture”

Alistair Cockburn

CODE EXAMPLES …

IMPLICATIONS

• Structural separation between “inside”
and “outside”, using explicit Ports and
Adapters

• ”Configurator” or Dependency
Injection Framework required to wire
the parts together

• Mapping between Layers/
Abstractions

• Reduced coupling leads to greatly
simplified testing

“Implications icons created by Circlon Tech - Flaticon"

CONCLUSIONS

• Pros:
- Reduces unhealthy coupling

between business/domain logic and
input/output details

- Greatly simplifies testing by
decoupling technical detail

- Important enabler for keeping the
domain model simple, concise and
maintainable

• Cons:
- Slightly more advanced

with steeper learning curve
- Increased number of

classes/interfaces to
maintain

- Increased mapping effort

TIME FOR QUESTIONS?

• Pros:
- Reduces unhealthy coupling

between business/domain logic and
input/output

- Greatly simplifies testing by
decoupling technical detail

- Important enabler for keeping the
domain model simple, concise and
maintainable

• Cons:
- Slightly more advanced

with steeper learning curve
- Increased number of

classes/interfaces to
maintain

- Increased mapping effort

https://github.com/callistaenterprise/cadec2025-hexagonal

