THE DOMAIN IN FOCUS

PORTS, ADAPTERS AND
HEXAGONAL ARCHITECTURE

CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

CLALLISTA

mailto:bjorn.beskow@callistaenterprise.se

IRECURRING THEME: SOFTWARE COMPLEXITY GROWS OVER TIME

CALLISTA

ITHE ROOT OF EVIL: UNMANAGED DEPENDENCIES

CALLISTA

IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

Dependency Injection

" interface®
Component .
Service
'
injects o
' realize®
'

- - -
public void setDao (CustomerDao dao) {
this.dao = dao;

CADEC2006, DI, Slide 6 B
Copyright 2006, Callista Enterprise AB CALLISTA

CALLISTA

IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

CALLISTA

“It is not the strongest of the species that
survive, nor the most intelligent. It is the one
that is most adaptable to change”

- Charles Darwin, 19th century

CALLISTA

IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

WHAT'S A MICROSERVICE?

? Autonomous software component

 Share nothing architecture

* Deployed as a runtime processes

* Small enough to fit in the head of a developer

* Big enough to avoid unacceptable latency and data inconsistency...

=» A group of microservices form a Distributed System

CALLISTA

IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

CALLISTA

CALLISTA

DDD AND MICROSERVICES? HOW DO THEY CONVERGE?

| | BOUNDARIES
Microservices MODULARITY DDD

» Scalability COUPLING « Complexity
+ Agility COHERENCE

SRP (Single

Responsibility

Principle)

CALLISTA

IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

DD
IWHAT IS AN ARCHITECT - DAVID FARLEY

* Expert Learners * Experts at Managing Complexity
* Iterations * Modularity
* Feedback * Cohesion
* Incrementally \j‘\f * Separation of concerns
* Empirical * Abstractions
* Experimental * Coupling
Test
IS TD D Cl/cD
Code

CALLISTA

CALLISTA

| AGENDA

 The problem:

- Taming complexity by managing
dependencies

o Architectural Layering

- The traditional way

- Why does it hurt?
 Hexagons or Ports and Adapters
« Code examples

e Conclusions

CALLISTA

IDOMAIN-DRIVEN DESIGN

Domam-Dnven

 Bounded Context

= - Ubiquitous Language
Strateglc - Subdomains

» Context Mapping

- Service
- Aggregate

Tactical CPRmy s

* Repository
* Domain Event

Eric Evans

CALLISTA

IDESIGN PRINCIPLES

® SOLID Robert C. Martin Series
- Single Responsibility Principle R '
- Open/Closed Principle CIeaAQraQ:ils‘GI:ifoture
- Liskov Substitution Principle ~ Software Structure and-.gl

- Interface Segregation Principle

- Dependency Inversion Principle

o Architectural Layering

Robert C. Martin

" With contributions by James Grenning and Simon Brown

Foreword by Kevlin Henney
@ Afterword by Jason Gorman

CALLISTA

ITRADITIONAL 1-DIMENSIONAL LAYERING

[Pl‘bsw j’a'HaVl (

CALLISTA

ITRADITIONAL 1-DIMENSIONAL LAYERING

CALLISTA

ITRADITIONAL LAYERING - LEAKING PRESENTATION DETAILS

CALLISTA

ITRADITIONAL 1-DIMENSIONAL LAYERING

PL @630\6\%@ BL

CALLISTA

ITRADITIONAL LAYERING - LEAKING PERSISTENCE DETAILS

CALLISTA

ILAYERING

CALLISTA

IS : SINGLE RESPONSIBILITY PRINCIPLE

“A class should have one,
and only one,
reason to change™

CALLISTA

ILAYERING

CALLISTA

i D: DEPENDENCY INVERSION PRINCIPLE

“High-level modules should not depend
on low-level modules.

CALLISTA

%29

ILAYERING

CALLISTA

IINVERTING THE DEPENDENCY

AR\t cnXiun

J\
O
e
N
:
N

U

U

-
A
VA

\§

Z

CALLISTA

i D: DEPENDENCY INVERSION PRINCIPLE

X4

Both should depend on abstractions.
Abstractions should not depend on details.
Details should depend on abstractions.”

CALLISTA

IINVERTING THE DEPENDENCY

AR\t cnXiun

J\
O
e
N
:
N

U

U

-
A
VA

\§

Z

CALLISTA

I ADDING PORTS

J\

. O
~<
M
=
?o
:
Q\n

CALLISTA

J\
. ©
~<
“.J
U
y
S

CALLISTA

el b
: 3 e Bl
33 P,) M rhal
Al o PR AN
¥ :
’)
p {9
2)
o . v 4
i Y
- 2
& i
RY Y .

i |D: INTERFACE SEGREGATION PRINCIPLE

“A client should never be forced to
implement an interface that it doesn’t use,
or clients shouldn’t be torced to depend on
methods they do not use.”

CALLISTA

IMULTIPLE PORTS

S
L
D
2
.
U

IMULTIPLE PORTS - IN AND OUT

CALLISTA

IHEXAGONAL ARCHITECTURE

e a.k.a.
- “Ports and Adapters” or
- “Onion Architecture” or

- “Clean Architecture”

. e B°
Alistair Cockburn

CALLISTA

|CODE EXAMPLES ...

2]
ProductUI

Postgres

2]
Products

Inventor

2]
InventoryService

CALLISTA

IIMPLICATIONS

e Structural separation between “inside”
and “outside”, using explicit Ports and

Adapters

 "Contigurator” or Dependency
Injection Framework required to wire
the parts together

» Mapping between Layers/

Abstractions

» Reduced coupling leads to greatly
simplified testing

“Implications icons created by Circlon Tech - Flaticon"

CALLISTA

ICONCLUSIONS

e Pros:

- Reduces unhealthy coupling
between business/domain logic and
input/output details

- Greatly simplifies testing by
decoupling technical detail

- Important enabler for keeping the
domain model simple, concise and
maintainable

e Cons:

- Slightly more advanced

with steeper learning curve

- Increased number of
classes/interfaces to
maintain

- Increased mapping effort

CALLISTA

ITIME FOR QUESTIONS?

e Pros: e Cons:

- Reduces unhealthy coupling - Slightly more advanced
between business/domain logic and with steeper learning curve
input/output - Increased number of

- Greatly simplifies testing by classes/interfaces to
decoupling technical detail maintain

- Important enabler for keeping the - Increased mapping etfort
domain model simple, concise and Ve .
maintainable

https://github.com/callistaenterprise/cadec2025-hexagonal

CALLISTA

