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IRECURRING THEME: SOFTWARE COMPLEXITY GROWS OVER TIME
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ITHE ROOT OF EVIL: UNMANAGED DEPENDENCIES
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IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

Dependency Injection

" interface®
Component .
Service
'
injects o
' realize®
'

- - -
public void setDao (CustomerDao dao) {
this.dao = dao;

CADEC2006, DI, Slide 6 B
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IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS
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“It is not the strongest of the species that
survive, nor the most intelligent. It is the one
that is most adaptable to change”

- Charles Darwin, 19th century
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IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

WHAT'S A MICROSERVICE?

? Autonomous software component

 Share nothing architecture

* Deployed as a runtime processes

* Small enough to fit in the head of a developer

* Big enough to avoid unacceptable latency and data inconsistency...

=» A group of microservices form a Distributed System
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IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS
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DDD AND MICROSERVICES? HOW DO THEY CONVERGE?

| | BOUNDARIES
Microservices MODULARITY DDD

» Scalability COUPLING « Complexity
+ Agility COHERENCE

SRP (Single

Responsibility

Principle)
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IARCHITECTURE: NEVER-ENDING BATTLE AGAINST CHAOS

DD
IWHAT IS AN ARCHITECT - DAVID FARLEY

* Expert Learners * Experts at Managing Complexity
* Iterations * Modularity
* Feedback * Cohesion
* Incrementally \j‘\f * Separation of concerns
* Empirical * Abstractions
* Experimental * Coupling
Test
IS TD D Cl/cD
Code
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| AGENDA

 The problem:

- Taming complexity by managing
dependencies

o Architectural Layering

- The traditional way

- Why does it hurt?
 Hexagons or Ports and Adapters
« Code examples

e Conclusions

CALLISTA



IDOMAIN-DRIVEN DESIGN

Domam-Dnven

 Bounded Context

= - Ubiquitous Language
Strateglc - Subdomains

» Context Mapping

- Service
- Aggregate

Tactical CPRmy s

* Repository
* Domain Event

Eric Evans
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IDESIGN PRINCIPLES

® SOLID Robert C. Martin Series
- Single Responsibility Principle R '
- Open/Closed Principle CIeaAQraQ:ils‘GI:ifoture
- Liskov Substitution Principle ~ Software Structure and-.gl

- Interface Segregation Principle

- Dependency Inversion Principle

o Architectural Layering

Robert C. Martin

" With contributions by James Grenning and Simon Brown

Foreword by Kevlin Henney
@ Afterword by Jason Gorman

CALLISTA



ITRADITIONAL 1-DIMENSIONAL LAYERING
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ITRADITIONAL 1-DIMENSIONAL LAYERING
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ITRADITIONAL LAYERING - LEAKING PRESENTATION DETAILS
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ITRADITIONAL 1-DIMENSIONAL LAYERING
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ITRADITIONAL LAYERING - LEAKING PERSISTENCE DETAILS
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ILAYERING
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IS : SINGLE RESPONSIBILITY PRINCIPLE

“A class should have one,
and only one,
reason to change™
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ILAYERING
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i D: DEPENDENCY INVERSION PRINCIPLE

“High-level modules should not depend
on low-level modules.
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ILAYERING
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IINVERTING THE DEPENDENCY
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i D: DEPENDENCY INVERSION PRINCIPLE

X4

Both should depend on abstractions.
Abstractions should not depend on details.
Details should depend on abstractions.”
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IINVERTING THE DEPENDENCY
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I ADDING PORTS
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i |D: INTERFACE SEGREGATION PRINCIPLE

“A client should never be forced to
implement an interface that it doesn’t use,
or clients shouldn’t be torced to depend on
methods they do not use.”
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IMULTIPLE PORTS
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IMULTIPLE PORTS - IN AND OUT

CALLISTA



IHEXAGONAL ARCHITECTURE

e a.k.a.
- “Ports and Adapters” or
- “Onion Architecture” or

- “Clean Architecture”

. e B°
Alistair Cockburn
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|CODE EXAMPLES ...

2 ]
ProductUI

Postgres

2 ]
Products

Inventor

2 ]
InventoryService
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IIMPLICATIONS

e Structural separation between “inside”
and “outside”, using explicit Ports and

Adapters

 "Contigurator” or Dependency
Injection Framework required to wire
the parts together

» Mapping between Layers/

Abstractions

» Reduced coupling leads to greatly
simplified testing

“Implications icons created by Circlon Tech - Flaticon"
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ICONCLUSIONS

e Pros:

- Reduces unhealthy coupling
between business/domain logic and
input/output details

- Greatly simplifies testing by
decoupling technical detail

- Important enabler for keeping the
domain model simple, concise and
maintainable

e Cons:

- Slightly more advanced

with steeper learning curve

- Increased number of
classes/interfaces to
maintain

- Increased mapping effort
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ITIME FOR QUESTIONS?

e Pros: e Cons:

- Reduces unhealthy coupling - Slightly more advanced
between business/domain logic and with steeper learning curve
input/output - Increased number of

- Greatly simplifies testing by classes/interfaces to
decoupling technical detail maintain

- Important enabler for keeping the - Increased mapping etfort
domain model simple, concise and Ve .
maintainable

https://github.com/callistaenterprise/cadec2025-hexagonal
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