
CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

LOCAL-FIRST

STEPHEN WHITE

LOCAL-FIRST - CONTENTS

• Cadec App
- Moderation
- Architecture

• What?
• How?
• Development Experience
• Final Thoughts

CADEC MODERATION APP

Q&A sessions after conference talks can sometimes get derailed by irrelevant or
off-topic questions.

Using AI - is it possible to moderate Q&A questions automatically?

PROBLEM STATEMENT:

CADEC MODERATION APP

• The app analyzes submitted questions to check:
» Whether the question contains profanity or offensive language.
» Relevance to the talk topic
▸ provides brief statement.
▸ gives a relevance score (not visible in UI)

» Sentiment (positive, neutral, negative).
» Suggests a (brief) answer.

HOW IT WORKS

§

Cadec App

Ask
question

Synch
Engine

Synch
Engine

Bad

Good

Cadec Admin App

Question
List

Moderator
Service

Open AI

Synch
Engine

Insert Trigger

Postgres

SQLite

State : New
1

Synch

2

Insert

3

Call Mod4 5

Update Question6

7

State Change8

Question
Change

9State: OK10

State: NOK
11

State Change8

9

CADEC APP

WHAT - LOCAL-FIRST

a set of principles for software that enables both collaboration
and ownership for users.

Local-first ideals include the ability to work offline and
collaborate across multiple devices,

while also improving the security, privacy, long-term
preservation, and user control of data.

https://www.inkandswitch.com/local-first/

WHAT - WHO

Apple notesFigma

WHAT - APPS

WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast
2. Your work is not trapped on one

device - Multi-device
3. The network is optional - Offline
4. Seamless collaboration with your

colleagues - Collaboration
5. The Long now - Longevity
6. Security and privacy by default -

Privacy
7. You retain ultimate ownership and

control - User control

WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast
2. Your work is not trapped on one

device - Multi-device
3. The network is optional - Offline
4. Seamless collaboration with your

colleagues - Collaboration
5. The Long now - Longevity
6. Security and privacy by default -

Privacy
7. You retain ultimate ownership and

control - User control

WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast
2. Your work is not trapped on one

device - Multi-device
3. The network is optional - Offline
4. Seamless collaboration with your

colleagues - Collaboration
5. The Long now - Longevity
6. Security and privacy by default -

Privacy
7. You retain ultimate ownership and

control - User control

WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast
2. Your work is not trapped on one

device - Multi-device
3. The network is optional - Offline
4. Seamless collaboration with your

colleagues - Collaboration
5. The Long now - Longevity
6. Security and privacy by default -

Privacy
7. You retain ultimate ownership and

control - User control

WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast
2. Your work is not trapped on one

device - Multi-device
3. The network is optional - Offline
4. Seamless collaboration with your

colleagues - Collaboration
5. The Long now - Longevity
6. Security and privacy by default -

Privacy
7. You retain ultimate ownership and

control - User control

https://en.wikipedia.org/wiki/Digital_dark_age

WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast
2. Your work is not trapped on one

device - Multi-device
3. The network is optional - Offline
4. Seamless collaboration with your

colleagues - Collaboration
5. The Long now - Longevity
6. Security and privacy by default -

Privacy
7. You retain ultimate ownership and

control - User control

WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast
2. Your work is not trapped on one

device - Multi-device
3. The network is optional - Offline
4. Seamless collaboration with your

colleagues - Collaboration
5. The Long now - Longevity
6. Security and privacy by default -

Privacy
7. You retain ultimate ownership and

control - User control

HOW - WHERE WE ARE NOW

• Huge Innovations in both FE and
BE

• Somethings missing?

?

• Request / reply

HOW - WHERE WE ARE NOW

• Request / reply
• Huge Innovations in both FE and

BE
• Its the Synch Engine!

SYNC
ENGINE

HOW - SYNCH ENGINE - POWER SYNCH

• Solves how we shuffle data around a
system

• Merging
• Conflict Free Replicated Data Type

(CRDTS)
- CF - merge algorithms for

different data types
» Json
» Sets
» Primitives
» Etc ..

HOW - POWER SYNCH - SYNCH RULES

1. How does data synch
2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines
which buckets should be synched
with the users device

3. Combining queries
1. Determine which user receives

which bucket

STREAM QUEUE

SYNC RULES

POSTGRES LOGICAL REPLICATION

Sqlite

1Connect

2Snapshot

3Client SDK

4SYNC

HOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device
2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines
which buckets should be synched
with the users device

3. Combining queries
1. Determine which user receives

which bucket

sync-rules.yaml
bucket_definitions:
 bucket_name: #name of bucket e.g. questions
 Parameters:# (optional) query used to determine which
 buckets are synched
 Data: # query used to determine the data in each bucket

HOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device
2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines
which buckets should be synched
with the users device

3. Combining queries
1. Determine which user receives

which bucket

sync-rules.yaml
bucket_definitions:
 Questions:
 data:
 - SELECT * FROM questions

QUESTIONS BUCKET

HOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device
2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines
which buckets should be synched
with the users device

3. Combining queries
1. Determine which user receives

which bucket

sync-rules.yaml
bucket_definitions:
 users_questions:
 Parameters:
 - SELECT request.user_id() AS id

From jwt token

User 2User 1 User 3

HOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device
2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines
which buckets should be synched
with the users device

3. Combining queries
1. Determine which user receives

which bucket

sync-rules.yaml
bucket_definitions:
 users_questions:
 parameters:
 - SELECT request.user_id() AS id
 Data:
 - SELECT * from questions
 WHERE owner_id = bucket.id

User 1
questions

User 2
questions

Platform / Master Data

Kafka to Data
Sink (MSK)

BFF DB

Platform / Master Data

BFF DB

Kafka to Data
Sink (MSK) Platform / Master Data

HOW - CADEC-APP - TECH STACK

EXPO

HOW - CADEC-APP - TECH STACK

DRIZZLE-ORM

EXPO

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

export const talks = pgTable("talk", {
 id: uuid().defaultRandom().notNull().primaryKey(),
 created_at: timestamp().defaultNow(),
 title: varchar('250'),
 description: varchar('1000'),
});

export const talksRelations = relations(talks, ({ many }) =>
({
 locationsToTalks: many(locationsToTalks),
 speakers: many(speakers),
 questions: many(questions),
 votes: many(voteCounts),
}));

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

> npx drizzle-kit migrate

export default defineConfig({
 out: "./drizzle",
 schema: "./src/db/schema.ts",
 dialect: "postgresql",
 dbCredentials: {
 url: process.env.DATABASE_URL!,
 },
});

> npx drizzle-kit push

> bun src/index.ts

// index.ts
async function main() {
 // clear db
 console.log("--- deleting data");
 await db.delete(speakers);
 …
 // insert
 console.log("--- inserting data");

 await db.insert(speakers)
 .values(data.speakers).onConflictDoNothing();

// data.ts
export const speakers: ISpeaker[] = [
 {
 id: ids.speaker1,
 talkId: ids.talk1,
 name: "Stephen White",
 },

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

export const talks = pgTable("talk", {
 id: uuid().defaultRandom().notNull().primaryKey(),
 created_at: timestamp().defaultNow(),
 title: varchar('250'),
 description: varchar('1000'),
});

export const talksRelations = relations(talks, ({ many }) =>
({
 locationsToTalks: many(locationsToTalks),
 speakers: many(speakers),
 questions: many(questions),
 votes: many(voteCounts),
}));

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

export const talks = sqliteTable("talk", {
 id: text("id").$defaultFn(uuid).notNull(),
 created_at: text("created_at")
 .default(sql`(datetime())`)
 .notNull(),
 title: text().notNull(),
 description: text().notNull(),
});

export const talksRelations = relations(talks, ({ one,
many }) => ({
 locationsToTalks: many(locationsToTalks),
 speakers: many(speakers),
 questions: many(questions),
 votes: many(voteCounts),
}));

export const locationsToTalks = sqliteTable(
 "locations_talks",
 {
 id: text("id").$defaultFn(uuid).notNull(),
 talkId: text("talk_id")
 .notNull()
 .references(() => talks.id),
 locationId: text("location_id")
 .notNull()
 .references(() => locations.id),
 },
 (t) => ({
 pk: primaryKey({ columns: [t.talkId, t.locationId] }),
 }),
);

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

export const useTalk = (talkId: string) => {
 const system = useSystem();
 const { locationId } = useFeatures();

 const result = system.db.query.talks.findFirst({
 with: {
 votes: true,
 speakers: true,
 },
 where: eq(talks.id, talkId),
 });
 const { data } = useQuery(toCompilableQuery(result));
 return data?.length > 0 ? data[0] : undefined;
};

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

export const useTalkVoteCount = ({ talkId }: { talkId?:
string }) => {
 const system = useSystem();
 const { locationId } = useFeatures();

 if (!talkId) return 0;

 const countQuery = system.db
 .select({ voteCount: count(voteCounts.id) })
 .from(voteCounts)
 .where(
 and(
 eq(voteCounts.userId, system.userId),
 eq(voteCounts.locationId, locationId),
 eq(voteCounts.talkId, talkId),
),
);

 const { data } = useQuery(toCompilableQuery(countQuery));
 return data?.[0]?.voteCount ?? 0;
};

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

const qs = `select q.id, q.state, t.id as talkId, t.title as talkTitle, q.question, q.user_id,
q.location_id,

 (SELECT COUNT(*) FROM vote_count vcq WHERE vcq.question_id = q.id AND
 vcq.user_id ='${system.userId}' AND
 vcq.location_id='${locationId}') AS yourQuestionVotes,
 (SELECT COUNT(*) FROM vote_count vcq WHERE vcq.question_id = q.id AND
 vcq.location_id='${locationId}') AS totalQuestionVotes,
 (SELECT COUNT(*) FROM vote_count vcq WHERE vcq.talk_id= t.id AND
 vcq.location_id='${locationId}' AND vcq.user_id='${system.userId}') AS yourTalkVotes,
 (SELECT COUNT(*) FROM vote_count vcq WHERE vcq.talk_id= t.id AND
 vcq.location_id='${locationId}') AS totalTalkVotes,

 from question q inner join talk t on t.id = q.talk_id

 where q.location_id='${locationId}' ${whereState} ${whereTalkId}

 order by talkId, totalQuestionVotes DESC;`;

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

export const useInsertQuestion = ({ talkId }:
InsertQuestionsProps) => {
 const [question, updateQuestion] = useState("");
 const system = useSystem();
 const { locationId } = useFeatures();
 const insertQuestion = async () => {
 try {
 return system.db
 .insert(questions)
 .values({
 userId: system.userId!,
 question: question,
 talkId: talkId,
 locationId,
 })
 .returning();
 } catch (e) {
 console.log("######## INSERT QUESTION", e);
 }
 };
 return { insertQuestion, updateQuestion, question };
};

DEVELOPMENT EXPERIENCE

1. Drizzle Server -
1. Define Schema
2. Migrate / Seed

2. Power Synch - Define Synch Rules
3. Drizzle Client -

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation
3. Use Hook in Component

export const QuestionsNewScreen:
React.FC<QuestionsNewScreenProps> = ({
 talkId,
 goBack,
}) => {

 const { insertQuestion } = useInsertQuestion({
 talkId,
 });

 const talk = useTalk(talkId);

FINAL THOUGHTS

1. Amazing DX!
2. Reduces cognitive API load!
3. The Domain is King!
4. Everything is Reactive!
5. You can be a Pioneer!
6. Just try it!

1. Pioneer Tax …
2. Not a good match for all apps
3. Can be hard to find a tech stack that

suites your needs. (changing fast)

PROS CONS

We believe that local-first is poised to become the default architecture for the
majority of apps
Local-first apps feel instant to use because of the near-zero latency of working with
a local in-app database
are functional even if the user’s network connection is unreliable or unavailable
provide built-in multi-user real-time collaboration

RIFFLE PRINCIPLES
1. DECLARATIVE QUERIES CLARIFY APPLICATION

STRUCTURE
2. MANAGING ALL STATE IN ONE SYSTEM PROVIDES

GREATER FLEXIBILIT Y
3. FAST REACTIVE QUERIES PROVIDE A CLEAN MENTAL

MODEL

