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CADEC MODERATION APP

Q&A sessions after conference talks can sometimes get derailed by irrelevant or 
off-topic questions. 

Using AI - is it possible to moderate Q&A questions automatically?

PROBLEM STATEMENT:



CADEC MODERATION APP

• The app analyzes submitted questions to check: 
» Whether the question contains profanity or offensive language. 
» Relevance to the talk topic 
▸ provides brief statement. 
▸ gives a relevance score (not visible in UI) 

» Sentiment (positive, neutral, negative). 
» Suggests a (brief ) answer.



HOW IT WORKS
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WHAT - LOCAL-FIRST

a set of principles for software that enables both collaboration 
and ownership for users.  

Local-first ideals include the ability to work offline and 
collaborate across multiple devices,  

while also improving the security, privacy, long-term 
preservation, and user control of data.

https://www.inkandswitch.com/local-first/



WHAT - WHO



Apple notesFigma

WHAT - APPS



WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast  
2. Your work is not trapped on one 

device - Multi-device 
3. The network is optional - Offline 
4. Seamless collaboration with your 

colleagues - Collaboration 
5. The Long now - Longevity 
6. Security and privacy by default - 

Privacy 
7. You retain ultimate ownership and 

control - User control
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https://en.wikipedia.org/wiki/Digital_dark_age
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HOW - WHERE WE ARE NOW

• Huge Innovations in both FE and 
BE 

• Somethings missing?

?

• Request / reply



HOW - WHERE WE ARE NOW

• Request / reply 
• Huge Innovations in both FE and 

BE 
• Its the Synch Engine!

SYNC 
ENGINE



HOW - SYNCH ENGINE - POWER SYNCH

• Solves how we shuffle data around a 
system 

• Merging 
• Conflict Free Replicated Data Type 

(CRDTS) 
- CF - merge algorithms for 

different data types  
» Json 
» Sets 
» Primitives 
» Etc ..



HOW - POWER SYNCH - SYNCH RULES

1. How does data synch 
2. Sync rules - Materialised View 

1. Data queries - specifies what data is 
included in a bucket 

2. Parameter queries - determines 
which buckets should be synched 
with the users device 

3. Combining queries 
1. Determine which user receives 

which bucket

STREAM QUEUE

SYNC RULES

POSTGRES LOGICAL REPLICATION
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4SYNC



HOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device 
2. Sync rules - Materialised View 

1. Data queries - specifies what data is 
included in a bucket 

2. Parameter queries - determines 
which buckets should be synched 
with the users device 

3. Combining queries 
1. Determine which user receives 

which bucket

# sync-rules.yaml 
bucket_definitions: 
  bucket_name: #name of bucket e.g. questions 
    Parameters:# (optional) query used to determine which  
                            buckets are synched 
    Data: # query used to determine the data in each bucket
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1. How does data get on your device 
2. Sync rules - Materialised View 

1. Data queries - specifies what data is 
included in a bucket 

2. Parameter queries - determines 
which buckets should be synched 
with the users device 

3. Combining queries 
1. Determine which user receives 

which bucket

# sync-rules.yaml 
bucket_definitions: 
  Questions: 
    data: 
      - SELECT * FROM questions

QUESTIONS BUCKET



HOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device 
2. Sync rules - Materialised View 

1. Data queries - specifies what data is 
included in a bucket 

2. Parameter queries - determines 
which buckets should be synched 
with the users device 

3. Combining queries 
1. Determine which user receives 

which bucket

# sync-rules.yaml 
bucket_definitions: 
  users_questions: 
    Parameters: 
      - SELECT request.user_id() AS id

From jwt token

User 2User 1 User 3



HOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device 
2. Sync rules - Materialised View 

1. Data queries - specifies what data is 
included in a bucket 

2. Parameter queries - determines 
which buckets should be synched 
with the users device 

3. Combining queries 
1. Determine which user receives 

which bucket

# sync-rules.yaml 
bucket_definitions: 
  users_questions: 
    parameters: 
      - SELECT request.user_id() AS id 
    Data: 
      - SELECT * from questions  
            WHERE owner_id = bucket.id

User 1 
questions

User 2 
questions 



Platform / Master Data



Kafka to Data 
Sink (MSK)

BFF DB

Platform / Master Data



BFF DB

Kafka to Data 
Sink (MSK) Platform / Master Data



HOW - CADEC-APP - TECH STACK

EXPO



HOW - CADEC-APP - TECH STACK

DRIZZLE-ORM

EXPO



DEVELOPMENT EXPERIENCE

1. Drizzle Server -  
1. Define Schema 
2. Migrate / Seed  

2. Power Synch - Define Synch Rules 
3. Drizzle Client - 

1. Define Schema 
2. Create Hook 

1. Query 
1. Aggregate 

2. Mutation 
3. Use Hook in Component

export const talks = pgTable("talk", { 
  id: uuid().defaultRandom().notNull().primaryKey(), 
  created_at: timestamp().defaultNow(), 
  title: varchar('250'), 
  description: varchar('1000'), 
}); 

export const talksRelations = relations(talks, ({ many }) => 
({ 
  locationsToTalks: many(locationsToTalks), 
  speakers: many(speakers), 
  questions: many(questions), 
  votes: many(voteCounts), 
})); 
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> npx drizzle-kit migrate 

export default defineConfig({ 
  out: "./drizzle", 
  schema: "./src/db/schema.ts", 
  dialect: "postgresql", 
  dbCredentials: { 
    url: process.env.DATABASE_URL!, 
  }, 
}); 

> npx drizzle-kit push 

> bun src/index.ts 

// index.ts 
async function main() { 
  // clear db 
  console.log("--- deleting data"); 
  await db.delete(speakers); 
  … 
  // insert 
 console.log("--- inserting data"); 

  await db.insert(speakers) 
          .values(data.speakers).onConflictDoNothing(); 

// data.ts 
export const speakers: ISpeaker[] = [ 
  { 
    id: ids.speaker1, 
    talkId: ids.talk1, 
    name: "Stephen White", 
  }, 
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1. Query 
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2. Mutation 
3. Use Hook in Component

export const talks = sqliteTable("talk", { 
  id: text("id").$defaultFn(uuid).notNull(), 
  created_at: text("created_at") 
    .default(sql`(datetime())`) 
    .notNull(), 
  title: text().notNull(), 
  description: text().notNull(), 
}); 

export const talksRelations = relations(talks, ({ one, 
many }) => ({ 
  locationsToTalks: many(locationsToTalks), 
  speakers: many(speakers), 
  questions: many(questions), 
  votes: many(voteCounts), 
})); 

export const locationsToTalks = sqliteTable( 
  "locations_talks", 
  { 
    id: text("id").$defaultFn(uuid).notNull(), 
    talkId: text("talk_id") 
      .notNull() 
      .references(() => talks.id), 
    locationId: text("location_id") 
      .notNull() 
      .references(() => locations.id), 
  }, 
  (t) => ({ 
    pk: primaryKey({ columns: [t.talkId, t.locationId] }), 
  }), 
); 



DEVELOPMENT EXPERIENCE

1. Drizzle Server -  
1. Define Schema 
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2. Power Synch - Define Synch Rules 
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2. Create Hook 
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export const useTalk = (talkId: string) => { 
  const system = useSystem(); 
  const { locationId } = useFeatures(); 

  const result = system.db.query.talks.findFirst({ 
    with: { 
      votes: true, 
      speakers: true, 
    }, 
    where: eq(talks.id, talkId), 
  }); 
  const { data } = useQuery(toCompilableQuery(result)); 
  return data?.length > 0 ? data[0] : undefined; 
}; 
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export const useTalkVoteCount = ({ talkId }: { talkId?: 
string }) => { 
  const system = useSystem(); 
  const { locationId } = useFeatures(); 
   
  if (!talkId) return 0; 

  const countQuery = system.db 
    .select({ voteCount: count(voteCounts.id) }) 
    .from(voteCounts) 
    .where( 
      and( 
        eq(voteCounts.userId, system.userId), 
        eq(voteCounts.locationId, locationId), 
        eq(voteCounts.talkId, talkId), 
      ), 
    ); 

  const { data } = useQuery(toCompilableQuery(countQuery)); 
  return data?.[0]?.voteCount ?? 0; 
}; 
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const qs = `select q.id, q.state, t.id as talkId, t.title as talkTitle, q.question, q.user_id, 
q.location_id, 

      ( SELECT  COUNT(*) FROM vote_count vcq WHERE vcq.question_id = q.id AND  
         vcq.user_id ='${system.userId}' AND  
         vcq.location_id='${locationId}' ) AS yourQuestionVotes, 
      ( SELECT  COUNT(*) FROM vote_count vcq WHERE vcq.question_id = q.id AND  
         vcq.location_id='${locationId}' ) AS totalQuestionVotes, 
      ( SELECT  COUNT(*) FROM vote_count vcq WHERE vcq.talk_id= t.id AND  
         vcq.location_id='${locationId}' AND vcq.user_id='${system.userId}') AS yourTalkVotes,  
      ( SELECT  COUNT(*) FROM vote_count vcq WHERE vcq.talk_id= t.id AND  
         vcq.location_id='${locationId}') AS totalTalkVotes, 
       
      from question q inner join talk t on t.id = q.talk_id  
       
      where q.location_id='${locationId}' ${whereState} ${whereTalkId} 
       
      order by talkId, totalQuestionVotes DESC;`; 
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export const useInsertQuestion = ({ talkId }: 
InsertQuestionsProps) => { 
  const [question, updateQuestion] = useState(""); 
  const system = useSystem(); 
  const { locationId } = useFeatures(); 
  const insertQuestion = async () => { 
    try { 
      return system.db 
        .insert(questions) 
        .values({ 
          userId: system.userId!, 
          question: question, 
          talkId: talkId, 
          locationId, 
        }) 
        .returning(); 
    } catch (e) { 
      console.log("######## INSERT QUESTION", e); 
    } 
  }; 
  return { insertQuestion, updateQuestion, question }; 
}; 
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export const QuestionsNewScreen: 
React.FC<QuestionsNewScreenProps> = ({ 
  talkId, 
  goBack, 
}) => { 

  const { insertQuestion } = useInsertQuestion({ 
    talkId, 
  }); 

  const talk = useTalk(talkId); 



FINAL THOUGHTS

1. Amazing DX! 
2. Reduces cognitive API load! 
3. The Domain is King! 
4. Everything is Reactive! 
5. You can be a Pioneer! 
6. Just try it!

1. Pioneer Tax … 
2. Not a good match for all apps 
3. Can be hard to find a tech stack that 

suites your needs. ( changing fast )

PROS CONS



We believe that local-first is poised to become the default architecture for the 
majority of apps 
Local-first apps feel instant to use because of the near-zero latency of working with 
a local in-app database 
are functional even if the user’s network connection is unreliable or unavailable 
provide built-in multi-user real-time collaboration



RIFFLE PRINCIPLES 
1. DECLARATIVE QUERIES CLARIFY APPLICATION 

STRUCTURE 
2. MANAGING ALL STATE IN ONE SYSTEM PROVIDES 

GREATER FLEXIBILIT Y 
3. FAST REACTIVE QUERIES PROVIDE A CLEAN MENTAL 

MODEL 


