LOCAL-FIRST

STEPHEN WHITE

CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

CLALLISTA

ILOCAL-FIRST - CONTENTS

« Cadec App
- Moderation
- Architecture
e What?
e« How?

e Development Experience

o Final Thoughts

CALLISTA

ICADEC MODERATION APP

PROBLEM STATEMENT:

O sessions after conference talks can sometimes get derailed by irrelevant or

off-topic questions.

Using Al - is it possible to moderate QA questions automatically?

CALLISTA

ICADEC MODERATION APP

 The app analyzes submitted questions to check:
» Whether the question contains profanity or offensive language.
» Relevance to the talk topic
» provides brief statement.
» gives a relevance score (not visible in UI)
» Sentiment (positive, neutral, negative).

» Suggests a (brief) answer.

CALLISTA

IHOW IT WORKS

AWS Cloud

L OpenAL API
m E>,' 0‘—_!) . >
n de
API AP I 670~teh/0~t/ ' gpt-‘fo-m?ni
- -1 |
AWS Lombda

CALLISTA

|
l

I

CALLISTA

Local Dev PC

L

- —
Ollama
gemma2
lowa 3. ‘

CADEC APP

. Cadec App W SOLite"
: State: NOK :
: Bad State New .
5 Synch E
5 questlon Engine 5
; Question ;
{0 state: o Change ;

Insert

‘ Call Mod
‘ Update Question

Insert Trigger

Pasz‘gres

;' Cadec Admin App
Synch ® (ouestion
: Engine List
‘ State Change
Moderator ‘ Open Al

Service

.-------_

| WHAT - LOCAL-FIRST

a set af principles far safz‘ware that enables both collaboration
and awners/yip far Users.

Local-first ideals include the ability to work offline and

collaborate across multiple devices,

while also improving the security, privacy, long-term
preservation, and user control of data.

CALLISTA https://www.1inkandswitch.com/local-first/

| WHAT - WHO

< Johannes Schickling @ c localfirst.fm Podcast &
® 5,651 posts 41 posts

Local-first software .

You own your data, in spite of the cloud Johannes Schickling @ localfirst.fm Podcast @
) @schickling @localfirstfm

Al Ink & Switch

" An independent research lab exploring
the future of tools for thought.

Peter van \ Martin . | | Adam
Hardenberg ? Kleppmann g | Wiggins

"A'lk I;Et El '»"’.". o ‘-.‘.,‘h 1SE

@

CALLISTA

| WHAT - APPS

Google Docs

/ Goodnotes

Figma . Apple notes

Cadec

N Linear

CALLISTA

| WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast

2. Your work is not trapped on one
device - Multi-device

3. The network is optional - Offfine

4. Seamless collaboration with your
colleagues - Collaboration

5. The Long now - Longevity

6. Security and privacy by default -
Privacy

7. You retain ultimate ownership and
control - User control

CALLISTA

| WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast

2. Your work is not trapped on one
device - Multi-device
3. The network is optional - Offfine

4. Seamless collaboration with your
colleagues - Collaboration

5. The Long now - Longevity

6. Security and privacy by default -
Privacy

7. You retain ultimate ownership and
control - User control

CALLISTA

| WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast

2. Your work is not trapped on one
device - Multi-device

3. The network is optional - Offfine

4. Seamless collaboration with your
colleagues - Collaboration

5. The Long now - Longevity

6. Security and privacy by default -
Privacy

7. You retain ultimate ownership and
control - User control

CALLISTA

| WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast

2. Your work is not trapped on one
device - Multi-device 1 Small Yellow Plante:

3. The network is optional - Offfine

4. Seamless collaboration with your
colleagues - Collaboration

5. The Long now - Longevity

6. Security and privacy by default -
Privacy

7. You retain ultimate ownership and
control - User control

CALLISTA

| WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast

2. Your work is not trapped on one
device - Multi-device

3. The network is optional - Offfine

4. Seamless collaboration with your
colleagues - Collaboration

5. The Long now - Longevity

6. Security and privacy by default -
Privacy

7. You retain ultimate ownership and
control - User control

CALLISTA

REGISTERED
DISK 4

REGISTERED R REGISTERED
DISK 1 : DISK 2

| WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast

2. Your work is not trapped on one
device - Multi-device

3. The network is optional - Offfine

4. Seamless collaboration with your
colleagues - Collaboration

5. The Long now - Longevity

6. Security and privacy by default -
Privac

7. You retain ultimate ownership and
control - User control

CALLISTA

| WHAT - THE 7 POINTS OF LOCAL-FIRST

1. No spinners - Fast

2. Your work is not trapped on one
device - Multi-device

3. The network is optional - Offfine

4. Seamless collaboration with your
colleagues - Collaboration

5. The Long now - Longevity
6. Security and privacy by default -

Privac
7. You retain ultimate ownership and
control - User control

CALLISTA

IHOW - WHERE WE ARE NOW

« Request / reply

» Huge Innovations in both FE and D
BE

« Somethings missing?

CALLISTA

IHOW - WHERE WE ARE NOW

« Request / reply

» Huge Innovations in both FE and D
BE
e Its the Synch Engine!
SYNC
ENGINE

CALLISTA

JHOW - SYNCH ENGINE - POWER SYNCH

e Solves how we shuffle data around a

system D
« Merging
o Conflict Free Replicated Data Type

(CRDTYS)

- CF - merge algorithms for
different data types

» Json

» Sets

» Primitives

» Ltc ..

CALLISTA

JHOW - POWER SYNCH - SYNCH RULES

1. How does data synch

2. Sync rules - Materialised View

Client SDK ‘

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines

which buckets should be synched

with the users device STREAM QUEUE

3. Combining queries

1. Determine which user receives

Wthh bucket Snapshot ‘

SYNC RULES

Co

POSTGRES LOGICAL REPLICATION
CALLISTA

JHOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device
2. Sync rules - Materialised View
1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines
which buckets should be synched

with the users device

3. Combining queries '
1. Determine which user receives

which bucket

CALLISTA

JHOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device

2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines
which buckets should be synched

with the users device

3. Combining queries
& A0 | >
1. Determine which user receives
which bucket

QUESTIONS BUCKET

CALLISTA

JHOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device
2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines

which buckets should be synched

with the users device

3. Combining queries

1. Determine which user receives

which bucket

CALLISTA

JHOW - POWER SYNCH - SYNCH RULES

1. How does data get on your device
2. Sync rules - Materialised View

1. Data queries - specifies what data is
included in a bucket

2. Parameter queries - determines

which buckets should be synched

with the users device

3. Combining queries

1. Determine which user receives

which bucket

CALLISTA

Kafka to Data : :
Sink (MSK) ~. Platform / Master Data .

‘e

.
o®

Kafka to Data : :
Sink (MSK) ~. Platform / Master Data .

‘e

.
o®

IHOW - CADEC-APP - TECH STACK

CALLISTA

N\

ElectricSQL
ElectricSQL team

TinyBase

James Pearce

PouchDB

PouchDB contributors

EXPO

6 Prisma

1777/ drizzle

LiveStore

Early Access

e AWS
S

Automerge
Ink & Switch and contributors

WatermelonDB
Radek Pietruszewski/ Nozbe

Amplify DataStore

Amazon Web Services

Legend State
Jay Meistrich

Yjs

Kevin Jahns & contributors

PowerSync
JourneyApps

IHOW - CADEC-APP - TECH STACK

N

EXPO

2’0’) PowerSync 4y supabase

DRIZZLE-ORM @

CALLISTA

IDEVELOPMENT EXPERIENCE

1 DfiZZle Server - export const tafks = pglTable("talk", {
) 1d: uuild().defaultRandom().notNull().primaryKey(),

created _at: timestamp().defaultNow(),
1. Define Schema title: warchar('250'),
description: varchar('1000'),

2. Migrate / Seed b

export const talksRelations = relations(tafks, ({ many }) =
2. Power Synch - Detine Synch Rules (1
locationsToTalks: many(focationslTolatks),
3 DfiZZle Cllent _ speakers: many(speakers),

questions: many(queations),
votes: many(voteCounts),

1. Define Schema 1)
2. Create Hook

1. Query
1. Aggregate

2. Mutation

3. Use Hook in Component

CALLISTA

IDEVELOPMENT EXPERIENCE

> npx drizzle-kit migrate

. _ export default defineConfig({
1. Drizzle Server o e
schema: "./src/db/schema.ts",
1. Define Schema dialect: "postgresql”,

dbCredentials: {

. url: process.env.DATABASE URL!,
2. Migrate / Seed .

1)
2. Power Synch - Detine Synch Rules
> npx drizzle-kit push
3. Drizzle Client - s bun src/index . ts
1. Define Schema // index.ts
async function main() {
// clear db
2- Create HOOk console.log("--- deleting data");
awalt db.delete(speakers);
1. Quer
(:l')[// insert
console.log("--- 1nserting data");
1- Aggregate awaiét db.insert(apleabeml)

. .values(data.speakers).onConflictDoNothing();
2. Mutation
// data.ts
. export const speakers: 1Speaker[] = [
3. Use Hook in Component {
id: t1ds.speakerl,
talkId: tds.talkl,
name: "Stephen White",

B

CALLISTA

IDEVELOPMENT EXPERIENCE

P

1 . D I iZZle S CIrver - (‘-_') Egz’r‘i’yeogync Project Manage instances
1 Deﬁne S Chema < PowerSync Project B SQL Query & sync-rules.yaml

[Cmﬁnenem”ngance+] # Define sync rules to control which data

. # See the docs: https://docs.powersync.cc
2. Mlgl‘ate / Seéd Q publicI bucket _definitions:

cadec:

® PowerSync Project d .:
2. Power Synch - Define Synch Rules i g

select x from location

3 D 1 1 Cl. t B cadec select *x from talk
. | VHALS 1C1NT - :
Connections select *x from speaker
S default select *x from question
1. Deﬁne SChema == -.conference select *x from vote_count

select *x from locations_talks

—o : select *x from features
2. Create HOOk : £ ; select *x from ques:ion
1. Query

1. Aggregate

B -vote count

2. Mutation

3. Use Hook in Component

CALLISTA

IDEVELOPMENT EXPERIENCE export const talks = sqglitelable("talk", {

id: text("id").%defaultFn(uuid).notNull(),
created at: text("created at")

1. Drizzle Server - default(sql (datetime())")
.NOtNull(),
title: text().notNull(),
1' Deﬁne SChema description: text().notNull(),
. })s
2. Migrate / Seed
export const talksRelations = relations(tafks, ({ one,
- many }) = ({
2' POW@I SynCh Deﬁne SynCh RUICS locationsToTalks: many(focationslolatks),
. . speakers: many(spearers),
3. DI‘lZZle Chent = questions: many(questions),
votes: many(voteCounts),
1. Define Schema 0
export const focationalolTaltks = asqliteTable(
2. Create Hook "locations talks",

{

id: text("id").%defaultFn(uuid).notNull(),

1. Qlery talkId: text("talk_ id")

.NOEtNuUll()

1. Aggregate _Teferences(() = talks.id),
locationld: text("location 1id")

. .NOEtNuUll()
2. MUtathn .references(() = {locations.id),
},
1 (t) = ({
3' Use HOOk 111 Component pk: primaryKey({ columns: [t.talkId, t.locationld] }),

1),
)

CALLISTA

IDEVELOPMENT EXPERIENCE

1. DfiZZl€ SCI‘V@]_’ - export const useTalk = (talkId: string) = {
const system = useSystem();
1 Deﬁne SChema const { locationId } = useFeatures();

const result = system.db.query.talks.findFirst({

2. Migrate / Seed with: {

votes: true,

k I)

2. Power Synch - Detine Synch Rules .
where: eq(talks.id, talkId),
1 1 — 1)
3' DleZle Chent const { data } = useQuery(toCompilableQuery(result));
return data?.length > 0 7?7 data[0] : undefined;
1. Define Schema

2. Create Hook

1. Aggregate

2. Mutation
3. Use Hook in Component

CALLISTA

IDEVELOPMENT EXPERIENCE

1. Drizzle Server -

export const useTalkVoteCount ({ talkId }: { talkId?:
1. Define Schema string }) = {

const system = useSystem();
const { locationId } = useFeatures();

2. Migrate / Seed
2. Power Synch - Detine Synch Rules

if (!talkId) return 0;

const countQuery = system.db
.select({ voteCount: count(voteCounts.id) })

3. DfiZZle Cllent — .from(voteCounts)
.where(
and(
1' Deﬁne SChema eq(voteCounts.userld, system.userld),
eq(voteCounts.locationlId, locationId),
2, Create Hook eq(voteCounts.talkId, talkId),

)

1. Query .

const { data } = useQuery(toCompilableQuery(countQuery));
1. Aggfegate .return data?.[0]7?.voteCount ?? 0;

2. Mutation

3. Use Hook in Component

CALLISTA

IDEVELOPMENT EXPERIENCE

const gs = "select g.id, qg.state, t.id as talkId, t.title as talkTitle, g.question, g.user id,
g.location_1id,

(SELECT COUNT(*) FROM vote count vcqg WHERE vcg.question id = qg.1id AND
vcg.user id ="'${system.userId}' AND
vcq.location id='${locationId}') AS yourQuestionVotes,
(SELECT COUNT(*) FROM vote count vcqg WHERE vcg.question id = qg.1id AND
vcqg.location id='${locationId}') AS totalQuestionVotes,
(SELECT COUNT(*) FROM vote count vcg WHERE vcqg.talk id= t.id AND
vcq.location id='%${locationId}' AND vcqg.user id='${system.userlId}') AS yourTalkVotes,
(SELECT COUNT(*) FROM vote count vcg WHERE vcqg.talk id= t.id AND
vcqg.location id='%${locationId}') AS totalTalkVotes,

from question g inner join talk t on t.id = qg.talk 1id
where g.location id='${locationId}' ${whereState} ${whereTalkId}

order by talkId, totalQuestionVotes DESC; *;

CALLISTA

IDEVELOPMENT EXPERIENCE

1. DfiZZle SCI‘VG:I‘ - export const uselnsertQuestion = ({ talkId }:
InsertQuestionsProps) = {
const [question, updateQuestion] = useState("");
1' Deﬁne SChema const system = useSystem();
. const { locationld } useFeatures();
2, Mlgrate / Seﬁd const insertQuestion = async () = {
try {
_ return system.db
2. Power Synch - Detine Synch Rules e ey
. . .values({
3. DleZle Chent - userId: system.userId!,
question: question,
talkId: talklId,
1. Deﬁne SChema locationld’

})

2. Create Hook .returning();

} catch (e) {
consofe.log("##t###### INSERT QUESTION", e);

}
};

return { insertQuestion, updateQuestion, question };

¥

2. Mutation

3. Use Hook in Component

CALLISTA

IDEVELOPMENT EXPERIENCE

1. Drizzle Server -

export const QuestionsNewScreen:

1. Deﬁne SChema React.FC<QuestionsNewScreenProps> = ({
talkId,
. goBack,
2. Migrate / Seed oo
2, POW@]_‘ SynCh - Deﬁne SynCh Rules cozstk{dinsert(puestion } = uselnsertQuestion({
alkld,
3. Drizzle Client - H

const talk = useTalk(talkId);

1. Define Schema
2. Create Hook

1. Query
1. Aggregate

2. Mutation

3. Use Hook in Component

CALLISTA

I FINAL THOUGHTS

PROS CONS

1. Amazing DX! 1. Pioneer Tax ...

2. Reduces cognitive API load! 2. Not a good match for all apps

3. The Domain is King! 3. Can be hard to find a tech stack that
4. Everything is Reactive! suites your needs. (changing fast)

5. You can be a Pioneer!

6. Just try it!

CALLISTA

We believe that local~first is poised to become the default architecture for the
mayjority of apps

Local-first apps feel instant to use because of the near-zero latency of working with
a local in-app database

are functional even if the users network connection is unreliable or unavailable
provide built-in multi-user real-time collaboration

RIFFLE PRINCIPLES

1. DECLARATIVE QUERIES CLARIFY APPLICATION
STRUCTURE

2. MANAGING ALL STATE IN ONE SYSTEM PROVIDES
GREATER FLEXIBILITY

3. FAST REACTIVE QUERIES PROVIDE A CLEAN MENTAL
MODEL

