
CADEC 2025.01.23 & 2025.01.29 | CALLISTAENTERPRISE.SE

BACKEND WEBASSEMBLY APPS

PETER LARSSON

This page is intentionally left blank.

“The frontend space is always moving in every
direction at the same time, this is known as
Schrodinger’s frontend, depending on when you
look at it and what intentions you have - you
may think you’re looking at the backend.”

- bryanrasmussen, Hacker News

“WEBASSEMBLY IS NOT A WEB TECHNOLOGY”

- Dr. Andreas Rossberg, WASM Co-designer

BRIEF INTRODUCTION TO WEBASSEMBLY (WASM)

2015 Originated at Mozilla to complement JavaScript
2017 Supported by all main browsers
2019 W3C Recommendation, Wasm System Interface, WASI Preview 1 (Posix)
2024 WASI & Component Model Preview 2, Wasm Interface Type, WIT IDL

W3C WebAssembly WG + CG and System Interface Subgroup Charter

Wasm is a standardized byte code format and virtual instruction set architecture.

package component:example@0.1.0;

world example {
 import wasi:cli/stdout@0.2.3;
 import wasi:cli/environment@0.2.3;
 export wasi:cli/run@0.2.3;
 include wasi:http/proxy@0.2.3;
}

WASM, WASI DESIGN GOALS

• Safe: predictable with validated code in a memory-safe sandboxed environment
• Polyglot: agnostic to language and programming model
• Fast: lightweight with near native code performance

Export (WASI, WIT)

Linear Memory

Import (WASI, WIT)

C/C++

Python
Kotlin

JavaScript
Java

Go

Rust

.NET
Ruby

Grain

Scala

MoonBit
Swift

Typescript

ARM
MIPS

RISC-V
PowerPC

Secure, Efficient, Portable and Modular

Component

WASM (Runtime)

World Definition (WASI, WIT)

Intel

COMPONENT MODEL & COMPOSABLE WIT WORLDS

package product:composite@0.1.0;

world composite {
 import product:service/api@0.1.0;
 import recommendation:service/api@0.1.0;
 include wasi:http/proxy@0.2.3;
}

Composite

WASM (Runtime)

Composite

COMPONENT MODEL & COMPOSABLE WIT WORLDS

package product:service@0.1.0;

interface api {
 record product {
 id: u32,
 name: string,
 weight: u32
 }
 get: func(id: u32) -> option<product>;
}

world product {
 export api;
}

package recommendation:service@0.1.0;

interface api {
 record recommendation {
 author: string,
 rate: u32,
 content: string
 }
 get: func(product-id: u32) -> list<recommendation>;
}

world recommendation {
 export api;
}

package product:composite@0.1.0;

world composite {
 import product:service/api@0.1.0;
 import recommendation:service/api@0.1.0;
 include wasi:http/proxy@0.2.3;
}

Composite

WASM (Runtime)

CompositeProduct Recommend

USE CASES

✓ Structured Monoliths

✓Microservices

✓ Serverless Functions

✓AI (LLM), Edge, Blockchain and IoT
Applications

✓Dynamic Extensions & Plugins

lightweight containerization

portable containerization

client-side sandboxing

portable universal platform

safe server side client codefast safe containers

determinism for
consensus

AI controller Interface

AI inference on the edge

legacy unsafe code

WHY CARE

HACKER ATTACKS AND BUGS

HACKER ATTACKS AND BUGS

Crowdstrike (2024)

XZ Utils backdoor (2024)
Kaseya VSA ransomware attack (July 2021)

Codecov backdoor (April 2021)

Log4Shell (December 2021)

NPM package typosquatting attacks (ongoing)

PyPI package attacks (ongoing)
3CX Desktop App (March 2023)

Cl0p MOVEit transfer attacks (May-June 2023)

Okta support system breach (October 2023)

Dependency confusion attacks (2021-ongoing)

HACKER ATTACKS AND BUGS

Crowdstrike (2024)

XZ Utils backdoor (2024)
Kaseya VSA ransomware attack (July 2021)

Codecov backdoor (April 2021)

Log4Shell (December 2021)

NPM package typosquatting attacks (ongoing)

PyPI package attacks (ongoing)
3CX Desktop App (March 2023)

Cl0p MOVEit transfer attacks (May-June 2023)

Okta support system breach (October 2023)

Dependency confusion attacks (2021-ongoing)

HACKER ATTACKS AND BUGS

Crowdstrike (2024)

XZ Utils backdoor (2024)
Kaseya VSA ransomware attack (July 2021)

Codecov backdoor (April 2021)

Log4Shell (December 2021)

NPM package typosquatting attacks (ongoing)

PyPI package attacks (ongoing)
3CX Desktop App (March 2023)

Cl0p MOVEit transfer attacks (May-June 2023)

Okta support system breach (October 2023)

Dependency confusion attacks (2021-ongoing)

OPEN SOURCE DEPENDENCIES

How Big is BIG

Source: Josh Bressers, CypherCon 7
2014 2024

20 M

40 M

100 M

80 M

60 M

10 M

OPEN SOURCE DEPENDENCIES

How Big is BIG

Source: Josh Bressers, CypherCon 7
2014 2024

20 M

40 M

100 M

80 M

60 M

10 M

93 M

8.1 million packages, 93 million versioned artifacts

OPEN SOURCE DEPENDENCIES

Source: Tidelift, 2023 Open Source Maintainer Report

An average of 1 maintainer per project (with a few exceptions)

TRUST!

TRUST!
In the code we trust, Really?

Do we have to trust the code?

DEMO

DEMO

DEMO — TOOLS

cargo Rust package manager

wit-bindgen WIT Language binding tool (code generator)

wasm-tools A collection of tools (sub-commands) for working with
wasm modules and components

wac Web Assembly Component Composition tool

wkg Package tool for fetching and publishing Wasm
Components to OCI or Warg registries

wasmtime, spin Standalone WASM Runtimes (VM)

docker Wasm containerd runtimes (shim)

teavm, maven AOT Java Bytecode to JS & WASM Compiler (Fermyon
fork with WASI support)

… and good old make to run them all

WASI/WASM BACKEND RUNTIMES

Standalone runtimes wasmtime, wasmedge, wasmer, spin, node, …

Docker/containerd Runtime shims from Bytecode Alliance, WasmEdge,
Spin, Slight, Wasm Workers Server, Lunatic, Wasmer

OpenShift/K8s/CRI-O crun-wasm enabled worker nodes (MachineConfig,
RuntimeClass)

NGINX Unit WASI-HTTP modules

Cloud Native Apps Fermyon Spin, Wasm Workers Server, wasmCloud,
wasmer.io, fastly, MoonBit, …

WASI/WASM ROADMAP — INTERESTING FEATURES

Now Next Later (? years)

Core WASM (WG) Release 2.0

Release 3.0
Core Threads
Exception handling
Memory64

~ 40 proposals in the
pipeline
memory model, security etc

Component Model &
WIT Preview 2

Preview 3
GC in Components
Native Async

Component Model 1.0

WASI Preview 2
Preview 3
Native Async Futures and
Streams

WASI 1.0

SUMMARY

WASM, Component Model & WASI

is definitely an interesting and promising backend technology

backend apps requires Component Model and WIT

in production use and ready for certain use-cases and platforms

targets real issues dealing with unsafe code

SUMMARY

WASM, Component Model & WASI

is definitely an interesting and promising backend technology

backend apps requires Component Model and WIT

in production use and ready for certain use-cases and platforms

targets real issues dealing with unsafe code

not yet ready for JVM based languages

But…

needs improved language and tooling support to become universal

slowly paving its way through the standardization process

the ecosystem might be too complex for developers to embrace

SUMMARY

WASM, Component Model & WASI

is definitely an interesting and promising backend technology

backend apps requires Component Model and WIT

in production use and ready for certain use-cases and platforms

targets real issues dealing with unsafe code

not yet ready for JVM based languages

But…

needs improved language and tooling support to become universal

slowly paving its way through the standardization process

the ecosystem might be too complex for developers to embrace

LINKS

• https://www.w3.org/TR/wasm-core-2/
• https://www.javaadvent.com/2024/12/wasm-4-the-java-geek-3-electric-boogaloo.html
• https://bytecodealliance.org/articles/webassembly-the-updated-roadmap-for-developers
• https://component-model.bytecodealliance.org/tutorial.html
• https://github.com/appcypher/awesome-wasm-langs
• https://github.com/mbasso/awesome-wasm
• https://github.com/mcuking/Awesome-WebAssembly-Applications
• https://www.redhat.com/en/blog/webassembly-wasm-and-openshift-a-powerful-duo-

for-modern-applications
• https://www.docker.com/blog/wasm-vs-docker/

https://www.w3.org/TR/wasm-core-2/
https://www.javaadvent.com/2024/12/wasm-4-the-java-geek-3-electric-boogaloo.html
https://bytecodealliance.org/articles/webassembly-the-updated-roadmap-for-developers
https://component-model.bytecodealliance.org/tutorial.html
https://github.com/appcypher/awesome-wasm-langs
https://github.com/mbasso/awesome-wasm
https://github.com/mcuking/Awesome-WebAssembly-Applications
https://www.redhat.com/en/blog/webassembly-wasm-and-openshift-a-powerful-duo-for-modern-applications
https://www.redhat.com/en/blog/webassembly-wasm-and-openshift-a-powerful-duo-for-modern-applications
https://www.docker.com/blog/wasm-vs-docker/

