
CADEC 2026.01.22 & 2026.01.28 | CALLISTAENTERPRISE.SE

SÄKERHET UTAN FRIKTION
SÅ GÖR DU SÄKERHET SYNLIGT OCH PRIORITERAT

VARJE DAG

OVE LINDSTRÖM

[2025-03-30][CRITICAL] -SportAdmin- Data Breach Detected (1M records)
[2025-08-14][CRITICAL] -Miljödata- Ransomware Encryption Started
[2025-10-10][WARNING] -Vision- Misusage of API NOT detected

[2025-10-10][FATAL] -svk.se - Unknown Data Breach

$> YOU BEEN PWNED! TOTAL LEAK: > 2.000.000.000 RECORDS

HUR HAMNADE VI HÄR?

MANUELL HASTIGHET AI-HASTIGHET

DET TYSTA S:ET

AGENDA

LÅGFRIKTIONSPROCESSER

- Utvecklingsmiljön
- Repo
- Krav

Gör inte säkerhet till en stödprocess

UTVECKLARENS DAGLIGA 3

• Validera ALLT!
// ❌ BAD CODE: String Concatenation
// "Lätt att skriva, lätt att hacka"
// Sårbar för SQL Injection om input är: "admin' --"
String query = "SELECT * FROM accounts WHERE id = '" + userInput + "'";
statement.execute(query);

// ✅ GOOD CODE: Parameterisation
// "Säkert by default"
// Databasen hanterar input som data, aldrig som kod.

String query = "SELECT * FROM accounts WHERE id = ?";
PreparedStatement stmt = conn.prepareStatement(query);
stmt.setString(1, userInput);
stmt.executeQuery();

UTVECKLARENS DAGLIGA 3

• Minsta Möjliga Privilegium

❌ BAD CONFIG: Root Access
Applikationen kör som root/sa.
Om kod injiceras kan angriparen droppa
tabeller eller läsa andras data.

datasource:
 url: jdbc:mysql://db-prod:3306/customers
 username: root
 password: superSecretPassword!

✅ GOOD CONFIG: Service Account
Applikationen får BARA göra INSERT och SELECT
på specifika tabeller.
Den kan inte göra DROP TABLE eller läsa admin-tabeller.

datasource:
 url: jdbc:mysql://db-prod:3306/customers

Har endast GRANT SELECT, INSERT, UPDATE
username: app_service_user
password: limitedUserPassword!

UTVECKLARENS DAGLIGA 3

• Utdatakontroll och Spårbarhet

// ❌ BAD CODE: Blind Logging
// "Bekvämt vid debug, katastrof vid intrång"
// User-objektets .toString() läcker personnummer och email i klartext till loggen.
catch (Exception e) {
 log.error("Failed to update user: " + userObj, e);
}

// ✅ GOOD CODE: Reference Logging
// "Spårbart men privat"
// Logga ID för att kunna felsöka, men håll känslig data borta.
catch (Exception e) {
 log.error("Failed to update user with ID: {}", userObj.getId(), e);
}

UTVECKLARENS DAGLIGA 3

// ✅ GOOD CODE - NO CODE

CI/CD: AUTOMATISERADE SKYDDSRÄCKEN

COMMIT BUILD TEST DEPLOY

OpenRewrite
SAST
Secret Detection
Dependabot

IaC
Secret Detection
Configuration Scanning

DAST
SCA

Policy as Code
Coding guides
Pre-Commit Hooks

Minsta Möjliga Privilegium

KVANTIFIERA SÄKERHET SOM EN INVESTERING

• Bluffa - Bottom Line Up Front (BLUF)

HÄVSTÅNGSEFFEKTER

• Minskad Mean Time To
Remediate - MTTR
- Från 200+ till 60 dagar

• Förväntat kostnad för
läckaget

• Kostnad för eskalering
• Minskad friktion mellan Dev-Sec-Ops

SLUTSATS: INTEGERERA SÄKERHET SOM SERVICE

• Kostnad och friktion ökar med avståndet
- Säkerhet tillhör kravställningen

• Säkra den Inre Loopen
- Det ska vara lätt att göra rätt

• Inför Utvecklarens Dagliga 3
• Automatisera:
- SAST/DAST
- SCA, IaC
- Uppdateringar, Dependabot

• Investering, inte kostad.

$> git commit -m “feat: install F1 brakes to ensure slow driving”
$> git amend -m “feat: brakes are to dare to drive fast”

$> git commit -m “security: calculating cost vs revenue”
$> git commit -m “feat: the reason for high revenue”

$> git commit -m “chore: invest in security (since 'git revert data-
breach' won't work)”

$> git switch q-and-a

