
| CALLISTAENTERPRISE.SE

LEAN & MEAN - GO MICROSERVICES WITH
DOCKER SWARM MODE AND SPRING CLOUD

ERIK LUPANDER

2017-11-09

ABOUT ME

• Erik Lupander, consultant at Callista Enterprise.
• Primarily a Java dude.
• ”Discovered” Go about 2 years ago.

2

3

Love at first sight!

• Background: The footprint problem.
• The Go programming language.
• Go in the context of:

• Microservices
• Spring Cloud/Netflix OSS
• Docker Swarm mode.

• Demos!

ON THE AGENDA…

4

5

Can Go help us help us reduce the
footprint of a microservice?

THE FOOTPRINT PROBLEM

• JVM-based solutions comes with a hefty footprint.
• If you need to run tens or even hundreds of microservice

instances, cost is definitely a factor.
• t2.micro (1GB) —> t2.small (2GB) doubles the cost / h.

• There are obviously many other alternatives for microservice
development….
• Very interesting topic… if we had all day.

THE FOOTPRINT PROBLEM

6

THE GO LANGUAGE

7

The Go Language

THE GO LANGUAGE

8

It has been stated that the reason the three authors
created Go was their…

THE GO LANGUAGE

9

”… shared dislike of C++'s complexity as a
primary motivation for designing a new language”

THE GO LANGUAGE

10

Go was designed …

THE GO LANGUAGE

11

”… to eliminate the slowness and clumsiness of
software development at Google”

Go official FAQ

• ~50x build time improvement over C++
• Internal C++ application builds taking 30-75 minutes.

• Better dependency management
• Cross-platform builds
• Language level concurrency
• Readable and maintainable code

• Even for non superstar developers

WHAT WAS IMPROVED WITH GO?

12

• Claims to be
• efficient, scalable and productive.

• Designed
• to improve the working environment for its designers and

their coworkers.
• Is not

• a research language.

THE GO LANGUAGE

13

• Go is
• compiled, statically typed, concurrent, garbage-collected

• Has
• structs, pointers, interfaces, closures

• But does not have
• classes, inheritance, generics, operator overloading, pointer

arithmetic

THE GO LANGUAGE

14

WHY GOLANG - DEVELOPING

15

What does actual developers think about Go?

16

”… a disservice to intelligent programmers”
Gary Willoughby - blogger

17

”… stuck in the 70’s”
Dan Given

18

”… psuedointellectual arrogance of Rob Pike
and everything he stands for”

Keith Wesolowski

THE GO LANGUAGE

19

But also

20

”I like a lot of the design decisions they made in the [Go] language.
Basically, I like all of them.”

Martin Odersky, creator of Scala

21

”Never used a language before that empowers you to solve problems
as quick as Go does”

Alexander Orlov @ Twitter

22

”Go isn’t a very good language in theory, but it’s a great language in
practice, and practice is all I care about”

anonymous hackernews poster

THE GO LANGUAGE

23

Some pros and cons

• Easy to learn, readable, productive and pretty powerful.
• The built-in concurrency is awesome.
• Cross-platform.
• Rich standard APIs and vibrant open source community.
• Quick turnaround and decent IDE support (getting better!)
• Nice bundled tools.

• Built-in unit testing, profiling, coverage, benchmarking,
formatting, code quality…

• Strongly opinionated.
• Code formatting, compile errors on typical warnings.

DEVELOPMENT IN GOLANG - PROS

24

• Missing generics
• Dependency versioning
• Verbose syntax

• Error checking, no autoboxing of primitive types etc.
• Unit testing and Mocking isn’t very intuitive.

DEVELOPING IN GOLANG - SOME CONS

25

• Some well-known software built entirely in golang
• Docker
• Kubernetes
• etcd
• influxdb (time series database)
• cockroachdb (spanner-like database)

WHO USES GOLANG

26

GOLANG - SYNTAX IN 2-5 MINUTES

27

Two code samples

SAMPLE CODE 1 - HELLO WORLD

28

SAMPLE CODE 2 - CONCURRENCY

29

30

Go microservices

• When implementing microservices, we need working, mature
and stable libraries for things such as:
• HTTP / REST / RPC APIs
• Data serializers / deserializers (json, xml etc.)
• Messaging APIs
• Persistence APIs
• Logging
• Testability

GO MICROSERVICE IMPLEMENTATION - CONSIDERATIONS

31

32

The demo application

ARCHITECTURAL OVERVIEW
Legend

• CB = Circuit Breaker (Go Hystrix)
• TA = Correlated tracing (Opentracing API / Zipkin)

VipService (Go)

Monitor
Dashboard

(Hystrix Dashboard)

OAuth
Authorization

Server
(spring-security)

CB/TA

Trace
Analysis
(Zipkin)

Edge server  
(Netflix Zuul)

Security API (Go)

CB / TA

OAuth Res

Account Composite (Go)

CB / TA

Images (Go)

OAuth token relay

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Docker Swarm
cluster

Curl

AMQP

Configuration
Server

(spring-cloud-
config)

TA

AMQP
Messaging
(RabbitMQ)

Quotes-Service
 (Spring Boot)

TA

HTTP HTTP

HTTP

HTTPS

HTTP

• Low memory usage
• Typically executes at least as fast as Java
• Fast startup
• Highly concurrent
• Garbage Collector geared for very short GC pauses

WHY GO - RUNTIME CHARACTERISTICS

34

• Statically linked binary produces an executable without
external dependencies.
• No jar- or dll-hell
• No requirement on the OS having a JRE / CLR / NodeJS or

other libraries
• (except libc)

• Small executable size

GO MICROSERVICES - STATICALLY LINKED BINARIES

35

• In the context of Docker Containers, the statically linked binary
allows use of very bare parent images.

• I’m using iron/base which is ~6 mb, alpine is another popular
choice.

DOCKER CONTAINERS & STATICALLY LINKED BINARIES

36

FROM iron/base  
 
EXPOSE 6868  
ADD vipservice-linux-amd64 /
ADD healthcheck-linux-amd64 /  

HEALTHCHECK CMD [”./healthcheck-linux-amd64”, ”-port=6868”]

ENTRYPOINT [”./vipservice-linux-amd64", ”-profile=test”]

37

Demo 1
Footprint @ Docker Swarm Mode

38

”what is hard in Microservices is all the things
around them”

Jonas Bonér - author of Akka

39

Consider:

• Centralized configuration
• Service Discovery
• Centralized Logging
• Distributed Tracing
• Circuit Breaking
• Load balancing
• Edge server / Reverse proxy
• Monitoring
• Security

MICROSERVICE CONSIDERATIONS

40

ARCHITECTURAL OVERVIEW
Legend

• CB = Circuit Breaker (Go Hystrix)
• TA = Correlated tracing (Opentracing API / Zipkin)

VipService (Go)

Monitor
Dashboard

(Hystrix Dashboard)

OAuth
Authorization

Server
(spring-security)

CB/TA

Trace
Analysis
(Zipkin)

Edge server  
(Netflix Zuul)

Security API (Go)

CB / TA

OAuth Res

Account Composite (Go)

CB / TA

Images (Go)

OAuth token relay

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Docker Swarm
cluster

Curl

AMQP

Configuration
Server

(spring-cloud-
config)

TA

AMQP
Messaging
(RabbitMQ)

Quotes-Service
 (Spring Boot)

TA

HTTP HTTP

HTTP

HTTPS

HTTP

42

Things not really Go-related…

• Our Go services doesn’t care about the EDGE / reverse-proxy
• Netflix Zuul, Nginx, HAProxy …
• Or use solution provided by container orchestrator

• Ingress Routing mesh (Docker Swarm mode)
• Ingress controller (K8S)
• Routes (OpenShift)

• Must forward HTTP headers.
• Security

EDGE SERVER

43

SERVICE DISCOVERY AND LOAD BALANCING

44

• Load-balancing and Service Discovery is handled by the
orchestration engine.
• E.g. the Docker Swarm or K8S / OpenShift ”service”

abstraction.
• Eureka service discovery and Ribbon-like client-based load-

balancing can be implemented too.

45

Demo 2 -
Load balancing and fast scaling

@ Docker Swarm

46

Go Microservice
Anatomy

TA

HTTP / REST FRAMEWORK

47

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

GO WITH OUT WITHOUT WEB FRAMEWORKS?

• Consider using the native http packages + a router package over
a full-blown web framework such as gin, echo, beego.

48

HTTP FRAMEWORK (GORILLA)

49

HTTP FRAMEWORK (GORILLA)

50

CENTRALIZED CONFIGURATION

51

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• With possibly tens of microservices and hundreds of
instances, centralized and externalized configuration is a
must.

• Configuration providers:
• Config servers

• Spring Cloud Config, etcd …
• Container orchestrator mechanisms

• K8S and OpenShift has ”config maps” and ”secrets” in
order to mount configuration files, certificates etc. into
containers at startup.

CENTRALIZED CONFIGURATION

52

Docker Swarm

CONFIGURATION USING SPRING CLOUD CONFIG AND VIPER

53

CB / TACB / TAVIPER
git

repository
HTTPS

CB / TACB / TAVIPER

HTTP

HTTP

Configuration
Server

(spring-cloud-config)

Microservices

http://configserver:8888/imageservice-test/master

• Viper supports YAML, .properties, JSON and Env-vars
• With a few lines of code, we can load and inject config from

Spring Cloud Config into Viper

CONFIGURATION - VIPER

54

CONFIGURATION - VIPER USAGE

55

Docker Swarm

CONFIGURATION PUSH USING SPRING CLOUD CONFIG AND VIPER

56

CB / TACB / TAVIPER

git
repository

HTTP POST commit hook

CB / TA

Configuration
Server

(spring-cloud-config)

Microservices

<config change commit
pushed to repo>

RabbitMQ

<Refresh token>

VIPER

<Refresh token>

57

Demo 3 -
Configuration Push

CENTRALIZED LOGGING

58

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• Applications needs structured logging
• slf4j, log4j, logback…

• Logrus is a similar API for Go
• Supports levels, fields, formatters, hooks

LOGGING - LOGRUS

59

LOGRUS

60

• In a Docker context, we configure a logging driver when
declaring our ”service”.
• The logging driver adds lots of nice container metadata.

• Logs are sent to an aggregation service (typically something
like logstash)

• The log aggregation service may perform some filtering,
transforming etc. before storing logs to a storage backend or
sending them to a LaaS provider.

CENTRALIZING LOGS

61

LOGGING WITH CONTAINER METADATA (GELF)

62

{
 "version":"1.1",
 "host":"swarm-manager-0",
 "short_message":{

 ”level”:"info",
 "msg":"Successfully initialized service”,
 ”time":"2017-07-17T16:03:35+02:00"

 },
 "timestamp":1.487625824614e+09,
 "level":6,
 "_command":"./vipservice-linux-amd64 -profile=test",
 ”_container_id”:”894edfe2faed131d417eebf77306a0386b430….",
 "_container_name":"vipservice.1.jgaludcy21iriskcu1fx9nx2p",
 "_created":"2017-02-20T21:23:38.877748337Z",
 ”_image_id”:”sha256:1df84e91e0931ec14c6fb4e55…..”,
 "_image_name":"someprefix/vipservice:latest",
 "_tag":"894edfe2faed"
}

63

DISTRIBUTED TRACING

64

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• Track a request over multiple microservices
• Also trace within services and methods

• Invaluable for high-level profiling across the service stack.
• Facilitated by go-opentracing and zipkin

DISTRIBUTED TRACING

65

GO-OPENTRACING CODE SAMPLE

66

DISTRIBUTED TRACING

67

68

Demo 4 -
Distributed Tracing with Zipkin

CIRCUIT BREAKER

69

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit
Breaker

(hystrix-go)

Distributed
Tracing

(opentracing-go)

Configuration
Client
(viper)

Logger
(logrus)

Trace
Analysis
(Zipkin)

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

Configuration
Server

(spring-cloud-
config)

AMQP
Messaging
(RabbitMQ)

• Mechanism to make sure a single malfunctioning microservice
doesn’t halt the entire service or application.

• go-hystrix (circuit breaker)
• Netflix Turbine (aggregation)
• Netflix Hystrix Dashboard (GUI)

CIRCUIT BREAKING - HYSTRIX

70

• Programmatic hystrix configuration

CIRCUIT BREAKING

71

• Example go-hystrix usage, non-blocking.

CIRCUIT BREAKING

72

• Hystrix stream aggregation using customized Netflix Turbine

CIRCUIT BREAKING

73

CB / TACB / TACB / TA

CB / TACB / TACB / TA

CB / TACB / TACB / TA

Monitor
Dashboard

(Hystrix Dashboard)

Go Services

RabbitMQ

Client Discovery token

Client Discovery token

:8181/hystrix.stream

:8181/hystrix.stream

:8181/hystrix.stream

Hystrix Stream
aggregation

(Modified Netflix
Turbine)

:8282/turbine.stream

74

Demo 5 -
Hystrix Dashboard

DISTRIBUTED TRACING

75

• Go is an interesting option for microservices due to runtime
characteristics and rather pleasant developing.
• Although but not without it’s fair share of quirks especially

regarding the lack of traditional OO constructs and missing
generics.

• Microservice development in Go requires a bit of work
regarding integration with supporting services, but can be
mitigated by using integration libraries such as go-kit or our
own little toolkit.
• Don’t be afraid to pick your favorite libraries!

SUMMARY

76

WANT TO LEARN MORE?

77

• Nic Jackson
• July 2017 from Packt
• Technical reviewers:

• Magnus Larsson
• Erik Lupander

DVIZZ - A DOCKER SWARM VISUALIZER

78

• https://github.com/eriklupander/dvizz
• Pull requests are more than welcome!

https://github.com/eriklupander/dvizz

• My 12-part blog series: http://callistaenterprise.se/blogg/
teknik/2017/02/17/go-blog-series-part1/

• Demo landscape source code: https://github.com/
callistaenterprise/goblog
• Branch ”nov2017”

• Spring Cloud Netflix: https://cloud.spring.io/spring-cloud-
netflix/

• go-kit: https://github.com/go-kit/kit
• dvizz: https://github.com/eriklupander/dvizz
• packt book: https://www.packtpub.com/application-

development/building-microservices-go

RESOURCES

79

http://callistaenterprise.se/blogg/teknik/2017/02/17/go-blog-series-part1/
http://callistaenterprise.se/blogg/teknik/2017/02/17/go-blog-series-part1/
http://callistaenterprise.se/blogg/teknik/2017/02/17/go-blog-series-part1/
https://github.com/callistaenterprise/goblog
https://github.com/callistaenterprise/goblog
https://cloud.spring.io/spring-cloud-netflix/
https://cloud.spring.io/spring-cloud-netflix/
https://github.com/go-kit/kit
https://github.com/eriklupander/dvizz
https://www.packtpub.com/application-development/building-microservices-go
https://www.packtpub.com/application-development/building-microservices-go
https://www.packtpub.com/application-development/building-microservices-go

80

Questions?

