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ABOUT ME

• Erik Lupander, consultant at Callista Enterprise.
• Primarily a Java dude.
• ”Discovered” Go about 2 years ago.
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Love at first sight!



• Background: The footprint problem.
• The Go programming language.
• Go in the context of:

• Microservices
• Spring Cloud/Netflix OSS
• Docker Swarm mode.

• Demos!

ON THE AGENDA…
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Can Go help us help us reduce the 
footprint of a microservice?

THE FOOTPRINT PROBLEM



• JVM-based solutions comes with a hefty footprint.
• If you need to run tens or even hundreds of microservice 

instances, cost is definitely a factor.
• t2.micro (1GB) —> t2.small (2GB) doubles the cost / h. 

• There are obviously many other alternatives for microservice 
development…. 
• Very interesting topic… if we had all day.

THE FOOTPRINT PROBLEM
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THE GO LANGUAGE
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The Go Language



THE GO LANGUAGE
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It has been stated that the reason the three authors 
created Go was their…



THE GO LANGUAGE
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”… shared dislike of C++'s complexity as a 
primary motivation for designing a new language”



THE GO LANGUAGE
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Go was designed …



THE GO LANGUAGE
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”… to eliminate the slowness and clumsiness of 
software development at Google”

Go official FAQ



• ~50x build time improvement over C++
• Internal C++ application builds taking 30-75 minutes.

• Better dependency management
• Cross-platform builds
• Language level concurrency
• Readable and maintainable code

• Even for non superstar developers

WHAT WAS IMPROVED WITH GO?
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• Claims to be
• efficient, scalable and productive.

• Designed
• to improve the working environment for its designers and 

their coworkers.
• Is not

• a research language.

THE GO LANGUAGE
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• Go is
• compiled, statically typed, concurrent, garbage-collected

• Has
• structs, pointers, interfaces, closures

• But does not have
• classes, inheritance, generics, operator overloading, pointer 

arithmetic

THE GO LANGUAGE
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WHY GOLANG - DEVELOPING
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What does actual developers think about Go?
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”… a disservice to intelligent programmers”
Gary Willoughby - blogger



17

”… stuck in the 70’s”
Dan Given
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”… psuedointellectual arrogance of Rob Pike 
and everything he stands for”

Keith Wesolowski



THE GO LANGUAGE
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But also
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”I like a lot of the design decisions they made in the [Go] language. 
Basically, I like all of them.”

Martin Odersky, creator of Scala
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”Never used a language before that empowers you to solve problems 
as quick as Go does”

Alexander Orlov @ Twitter
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”Go isn’t a very good language in theory, but it’s a great language in 
practice, and practice is all I care about”

anonymous hackernews poster



THE GO LANGUAGE
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Some pros and cons



• Easy to learn, readable, productive and pretty powerful.
• The built-in concurrency is awesome.
• Cross-platform.
• Rich standard APIs and vibrant open source community.
• Quick turnaround and decent IDE support (getting better!)
• Nice bundled tools.

• Built-in unit testing, profiling, coverage, benchmarking, 
formatting, code quality…

• Strongly opinionated.
• Code formatting, compile errors on typical warnings.

DEVELOPMENT IN GOLANG - PROS
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• Missing generics
• Dependency versioning
• Verbose syntax

• Error checking, no autoboxing of primitive types etc.
• Unit testing and Mocking isn’t very intuitive.

DEVELOPING IN GOLANG - SOME CONS
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• Some well-known software built entirely in golang
• Docker
• Kubernetes
• etcd
• influxdb (time series database)
• cockroachdb (spanner-like database)

WHO USES GOLANG

26



GOLANG - SYNTAX IN 2-5 MINUTES
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Two code samples



SAMPLE CODE 1 - HELLO WORLD
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SAMPLE CODE 2 - CONCURRENCY
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Go microservices



• When implementing microservices, we need working, mature 
and stable libraries for things such as:
• HTTP / REST / RPC APIs
• Data serializers / deserializers (json, xml etc.)
• Messaging APIs
• Persistence APIs
• Logging 
• Testability

GO MICROSERVICE IMPLEMENTATION - CONSIDERATIONS
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The demo application



ARCHITECTURAL OVERVIEW
Legend
 
• CB = Circuit Breaker (Go Hystrix)
• TA = Correlated tracing (Opentracing API / Zipkin)
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• Low memory usage
• Typically executes at least as fast as Java
• Fast startup
• Highly concurrent
• Garbage Collector geared for very short GC pauses

WHY GO - RUNTIME CHARACTERISTICS
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• Statically linked binary produces an executable without 
external dependencies.
• No jar- or dll-hell
• No requirement on the OS having a JRE / CLR / NodeJS or 

other libraries
• (except libc)

• Small executable size

GO MICROSERVICES - STATICALLY LINKED BINARIES
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• In the context of Docker Containers, the statically linked binary 
allows use of very bare parent images.

• I’m using iron/base which is ~6 mb, alpine is another popular 
choice.

DOCKER CONTAINERS & STATICALLY LINKED BINARIES
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FROM iron/base  
 
EXPOSE 6868  
ADD vipservice-linux-amd64 /
ADD healthcheck-linux-amd64 /  

HEALTHCHECK CMD [”./healthcheck-linux-amd64”, ”-port=6868”]

ENTRYPOINT [”./vipservice-linux-amd64", ”-profile=test”]
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Demo 1
Footprint @ Docker Swarm Mode
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”what is hard in Microservices is all the things 
around them”

Jonas Bonér - author of Akka
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Consider:



• Centralized configuration
• Service Discovery
• Centralized Logging
• Distributed Tracing
• Circuit Breaking
• Load balancing
• Edge server / Reverse proxy
• Monitoring
• Security

MICROSERVICE CONSIDERATIONS
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ARCHITECTURAL OVERVIEW
Legend
 
• CB = Circuit Breaker (Go Hystrix)
• TA = Correlated tracing (Opentracing API / Zipkin)

VipService (Go)

Monitor 
Dashboard 

(Hystrix Dashboard)

OAuth 
Authorization 

Server 
(spring-security)

CB/TA

Trace 
Analysis 
(Zipkin)

Edge server  
(Netflix Zuul)

Security API (Go)

CB / TA

OAuth Res

Account Composite (Go)

CB / TA

Images (Go)

OAuth token relay

Hystrix Stream 
aggregation 

(Modified Netflix 
Turbine)

Docker Swarm 
cluster

Curl

AMQP

Configuration 
Server 

(spring-cloud-
config)

TA

AMQP  
Messaging 
(RabbitMQ)

Quotes-Service
 (Spring Boot)

TA

HTTP HTTP

HTTP

HTTPS

HTTP



42

Things not really Go-related…



• Our Go services doesn’t care about the EDGE / reverse-proxy
• Netflix Zuul, Nginx, HAProxy …
• Or use solution provided by container orchestrator

• Ingress Routing mesh (Docker Swarm mode)
• Ingress controller (K8S)
• Routes (OpenShift)

• Must forward HTTP headers.
• Security

EDGE SERVER
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SERVICE DISCOVERY AND LOAD BALANCING
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• Load-balancing and Service Discovery is handled by the 
orchestration engine.
• E.g. the Docker Swarm or K8S / OpenShift ”service” 

abstraction.
• Eureka service discovery and Ribbon-like client-based load-

balancing can be implemented too.
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Demo 2 -
Load balancing and fast scaling

@ Docker Swarm
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Go Microservice
Anatomy

TA



HTTP / REST FRAMEWORK
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HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit 
Breaker

(hystrix-go)

Distributed 
Tracing

(opentracing-go)

Configuration 
Client
(viper)

Logger
(logrus)

Trace 
Analysis 
(Zipkin)

Hystrix Stream 
aggregation 

(Modified Netflix 
Turbine)

Configuration 
Server 

(spring-cloud-
config)

AMQP  
Messaging 
(RabbitMQ)



GO WITH OUT WITHOUT WEB FRAMEWORKS?

• Consider using the native http packages + a router package over 
a full-blown web framework such as gin, echo, beego. 
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HTTP FRAMEWORK (GORILLA)
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HTTP FRAMEWORK (GORILLA)
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CENTRALIZED CONFIGURATION
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• With possibly tens of microservices and hundreds of 
instances, centralized and externalized configuration is a 
must.

• Configuration providers:
• Config servers

• Spring Cloud Config, etcd …
• Container orchestrator mechanisms

• K8S and OpenShift has ”config maps” and ”secrets” in 
order to mount configuration files, certificates etc. into 
containers at startup.

CENTRALIZED CONFIGURATION
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Docker Swarm

CONFIGURATION USING SPRING CLOUD CONFIG AND VIPER
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CB / TACB / TAVIPER
git 

repository
HTTPS
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Configuration 
Server 

(spring-cloud-config)

Microservices

http://configserver:8888/imageservice-test/master



• Viper supports YAML, .properties, JSON and Env-vars
• With a few lines of code, we can load and inject config from 

Spring Cloud Config into Viper

CONFIGURATION - VIPER
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CONFIGURATION - VIPER USAGE
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Docker Swarm

CONFIGURATION PUSH USING SPRING CLOUD CONFIG AND VIPER
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Demo 3 -
Configuration Push



CENTRALIZED LOGGING
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• Applications needs structured logging
• slf4j, log4j, logback…

• Logrus is a similar API for Go
• Supports levels, fields, formatters, hooks

LOGGING - LOGRUS
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LOGRUS
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• In a Docker context, we configure a logging driver when 
declaring our ”service”.
• The logging driver adds lots of nice container metadata.

• Logs are sent to an aggregation service (typically something 
like logstash)

• The log aggregation service may perform some filtering, 
transforming etc. before storing logs to a storage backend or 
sending them to a LaaS provider.

CENTRALIZING LOGS

61



LOGGING WITH CONTAINER METADATA (GELF)
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{
      "version":"1.1",
      "host":"swarm-manager-0",
      "short_message":{

  ”level”:"info",
  "msg":"Successfully initialized service”,
  ”time":"2017-07-17T16:03:35+02:00"

 },
      "timestamp":1.487625824614e+09,
      "level":6,
      "_command":"./vipservice-linux-amd64 -profile=test",
      ”_container_id”:”894edfe2faed131d417eebf77306a0386b430….",
      "_container_name":"vipservice.1.jgaludcy21iriskcu1fx9nx2p",
      "_created":"2017-02-20T21:23:38.877748337Z",
      ”_image_id”:”sha256:1df84e91e0931ec14c6fb4e55…..”,
      "_image_name":"someprefix/vipservice:latest",
      "_tag":"894edfe2faed"
}
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DISTRIBUTED TRACING

64

HTTP/REST framework
(gorilla)

AMQP
client

(steadway/
amqp)

Circuit 
Breaker

(hystrix-go)

Distributed 
Tracing

(opentracing-go)

Configuration 
Client
(viper)

Logger
(logrus)

Trace 
Analysis 
(Zipkin)

Hystrix Stream 
aggregation 

(Modified Netflix 
Turbine)

Configuration 
Server 

(spring-cloud-
config)

AMQP  
Messaging 
(RabbitMQ)



• Track a request over multiple microservices
• Also trace within services and methods

• Invaluable for high-level profiling across the service stack.
• Facilitated by go-opentracing and zipkin

DISTRIBUTED TRACING
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GO-OPENTRACING CODE SAMPLE
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DISTRIBUTED TRACING
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Demo 4 -
Distributed Tracing with Zipkin



CIRCUIT BREAKER
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• Mechanism to make sure a single malfunctioning microservice 
doesn’t halt the entire service or application.

• go-hystrix (circuit breaker)
• Netflix Turbine (aggregation)
• Netflix Hystrix Dashboard (GUI)

CIRCUIT BREAKING - HYSTRIX
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• Programmatic hystrix configuration

CIRCUIT BREAKING
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• Example go-hystrix usage, non-blocking.

CIRCUIT BREAKING
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• Hystrix stream aggregation using customized Netflix Turbine

CIRCUIT BREAKING
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CB / TACB / TACB / TA
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Demo 5 -
Hystrix Dashboard



DISTRIBUTED TRACING
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• Go is an interesting option for microservices due to runtime 
characteristics and rather pleasant developing.
• Although but not without it’s fair share of quirks especially 

regarding the lack of traditional OO constructs and missing 
generics.

• Microservice development in Go requires a bit of work 
regarding integration with supporting services, but can be 
mitigated by using integration libraries such as go-kit or our 
own little toolkit.
• Don’t be afraid to pick your favorite libraries!

SUMMARY
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WANT TO LEARN MORE?
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• Nic Jackson
• July 2017 from Packt
• Technical reviewers:

• Magnus Larsson
• Erik Lupander



DVIZZ - A DOCKER SWARM VISUALIZER
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• https://github.com/eriklupander/dvizz
• Pull requests are more than welcome!

https://github.com/eriklupander/dvizz


• My 12-part blog series: http://callistaenterprise.se/blogg/
teknik/2017/02/17/go-blog-series-part1/

• Demo landscape source code: https://github.com/
callistaenterprise/goblog
• Branch ”nov2017”

• Spring Cloud Netflix: https://cloud.spring.io/spring-cloud-
netflix/

• go-kit: https://github.com/go-kit/kit
• dvizz: https://github.com/eriklupander/dvizz
• packt book: https://www.packtpub.com/application-

development/building-microservices-go

RESOURCES
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Questions?


