
| CALLISTAENTERPRISE.SE

MICROSERVICES I PRAKTIKEN

MAGNUS LARSSON

2015.05.21

 från tröga monoliter till en arkitektur för kortare ledtider,
högre skalbarhet och ökad feltolerans

1

•  What’s the problem?
•  New solutions to old problems...
•  What’s a microservice?

•  New challenges with microservices
•  Implementing microservices
•  Demonstration

AGENDA

2

•  Well known problems
with monolithic applications
-  Poor scalability and resilience
-  Long release cycles

•  ...we hade tried to solve these
problems before (and failed?)...

•  But there are new opportunities now!

WHAT’S THE PROBLEM??

ArchiMate 2.0 syntax

Node

Process

Business
Function

3

•  Microservices was first heard of in May 2011

•  Success stories from early adopters
migrating from monoliths to microservices

- Amazon (http://goo.gl/LfsD67)
-  eBay (http://goo.gl/dodV2c)
- Gilt (http://goo.gl/yVVox9)

- Groupon (https://goo.gl/uKTtAs)
- Karma (https://goo.gl/kXObAO)

- Netflix: Part 1, part 2 and “Fast Delivery”
(https://goo.gl/MVgHM1, https://goo.gl/fDeZ5A, https://goo.gl/hN6ZCL)

-  SoundCloud: Part 1, part 2 and part 3
(https://goo.gl/Xq0Cgm, https://goo.gl/swJ8Vt, https://goo.gl/J2oN8I)

HISTORY OF MICROSERVICES

4

•  Strong trend moving from “Big Iron” to many small servers
- Typically virtual servers
-  In cloud or/and on premises
-  Better price/performance

NEW SOLUTIONS TO OLD PROBLEMS

5

•  Cloud computing makes it easier to manage many small servers
-  IaaS: Infrastructure as a Service

»  Deliver virtual servers
»  E.g. Amazon EC2, Microsoft Azure, Google Compute Engine et. al.

-  PaaS: Platform as a Service
»  Deliver an application platform
»  E.g. Heroku, Red Hat OpenShift, Pivotal Cloud Foundry et. Al.
»  Note: Some PaaS can be used on premises, e.g. OpenShift and Cloud Foundry

-  Docker, the Container revolution...
»  IaaS + PaaS ! CaaS ?
»  Windows Server Containers on its way (http://goo.gl/ZmEkTS)!

NEW SOLUTIONS TO OLD PROBLEMS

6

•  How to fit monolithic applications in a number of small boxes?

NEW SOLUTIONS TO OLD PROBLEMS

7

?

•  We need to split the monolith to make it fit...
NEW SOLUTIONS TO OLD PROBLEMS

8

!

•  Splitting the monolith also makes it easier to scale...
- Auto scaling provided by platforms

NEW SOLUTIONS TO OLD PROBLEMS

9

!

•  Shorter release cycles
-  So much easier to update or replace a microservice compared to a monolith

NEW SOLUTIONS TO OLD PROBLEMS

10

! new
version

new
version

•  A software component that is independently replaceable and upgradeable

•  Share nothing architecture
- They don’t share databases!
- Only communicate through well defined interfaces,

»  E.g. REST services or queuing mechanisms

•  Typically deployed as separate runtime processes

WHAT’S A MICROSERVICE?

11

WHAT’S A MICROSERVICE?

12

WHAT’S A MICROSERVICE?

How big is a microservice?

•  Small enough to fit in

the head of a developer

•  Big enough to not jeopardize
•  Performance
•  Data consistency

13

HOW DOES MICROSERVICES FIT INTO AN EXISTING SYSTEM LANDSCAPE?

14

External API Platform

Monolith A Monolith B Monolith C

Enterprise Service Bus

Partner Applications

HOW DOES MICROSERVICES FIT INTO AN EXISTING SYSTEM LANDSCAPE?

15

External API Platform

Monolith A Monolith B

Enterprise Service Bus

Partner Applications

Application C
(based on microservices)

WHAT’S A MICROSERVICE?

External API Platform

Monolith A Monolith B

Enterprise Service Bus

Application C
(based on microservices)

•  SOA vs. Microservices

-  SOA and microservices
don’t conflict, they
complement each other!

-  SOA is about how to reuse
existing functionality as services...

-  Microservices is about how to
make functionality to scale
better with high resilience
and short release cycles...

SOA

Micro-
services

16

•  Managing large numbers of microservices...
- Where are they and are they ok???

NEW CHALLENGES WITH MICROSERVICES

17

•  What went wrong???

NEW CHALLENGES WITH MICROSERVICES

18

•  Minor effect if a small microservice fails than a big monolith...
NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

19

VS

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

20

?
•  Beware of chain reactions...
- A.k.a “chain of failures”

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

21

•  Beware of chain reactions...
- A.k.a “chain of failures”

Circuit Breaker to the rescue!

•  Prevents calls when too many
errors are observed

•  Directs the call to a fallback method

•  Retries the call periodically

•  Managing large numbers of microservices requires tools for
1.  Runtime discovery of services

»  New services can auto-register at startup
2.  Dynamic router and load balancer

»  Clients can detect new instances as they are started up
3.  Centralized log management

»  Collects and visualize log events from distributed processes
4.  Circuit breaker

»  Prevent problems with chain of failures
5.  Protecting external API’s

»  Secure external API’s, e.g. using OAuth 2.0

NEW CHALLENGES WITH MICROSERVICES

22

•  Managing large numbers of microservices requires tools for
1.  Runtime discovery of services

»  New services can auto-register at startup
2.  Dynamic router and load balancer

»  Clients can detect new instances as they are started up
3.  Circuit breaker

»  Prevent problems with chain of failures
4.  Centralized log management

»  Collects and visualize log events from distributed processes
5.  Protecting external API’s

»  Secure external API’s using OAuth 2.0

NEW CHALLENGES WITH MICROSERVICES

Open Source tools
to the rescue

23

•  What’s the problem?
•  New solutions to old problems...
•  What’s a microservice?

•  New challenges with microservices
•  Implementing microservices
•  Demonstration

AGENDA – WHERE ARE WE?

24

•  Netflix OSS (http://goo.gl/DHOf4o)
-  Since 2011, Netflix has been releasing components of

their cloud platform as free and open source software
-  Obviously proven in battle...

•  Spring Cloud (http://goo.gl/vHVdEp)

-  Spring Cloud simplifies use of Netflix OSS
-  Add own components, e.g. OAuth 2.0 support
-  Based on Spring Boot and the “convention over configuration” paradigm

•  The ELK stack (https://goo.gl/aCHlhN)
-  Elasticsearch, Logstash and Kibana
-  Used for centralized log analyses

IMPLEMENT MICROSERVICES WITH OPEN SOURCE

25

•  An API for product-information

•  A composite service aggregate
information from three core-
services

•  Plus infrastructure services for
OAuth, Discovery and Edge-
servers...

DEMO SYSTEM LANDSCAPE

26

Products

Product Composite

Curl

Product API

Recommendations Reviews

DEMO SYSTEM LANDSCAPE

27

Legend

•  CB = Circuit Breaker (Netflix Hystrix)
•  LB = Load Balancer (Netflix Ribbon)

Curl

Products Recommendations

Service
Discovery

(Netflix Eureka)

Monitor
Dashboard

(Netflix Turbine +
Hystrix Dashboard)

OAuth
Authorization

Server
(spring-security)

CB/LB

OAuth token relay

Logging
Analyses

(ELK stack)

Edge server
(Netflix Zuul)

Product API

CB/LB

OAuth Res

Product Composite

CB/LB

Reviews

$ docker-compose start

DEPLOY

•  In cloud
-  Using PaaS: Pivotal Web Services

 (https://goo.gl/I3oDGt)

•  On premises
-  Using Docker

-  Sample configuration file

28

$ cf push

-  Sample configuration file

memory: 512M
instances: 1
applications:
- name: product-api-service
 path: product-api.jar

discovery:
 image: callista/discovery-server

pro:
 image: callista/product-service
 links:
 - discovery

DEPLOY

•  In cloud
-  Using PaaS: Pivotal Web Services

•  On premises
-  Using Docker

-  Sample configuration file

29

$ docker-compose start

$ cf push

-  Sample configuration file

memory: 512M
instances: 1
applications:
- name: product-api-service
 path: product-api.jar

discovery:
 image: callista/discovery-server

pro:
 image: callista/product-service
 links:
 - discovery

Java-jar files and
Docker images are
created by build scripts

•  Discovery server

•  Centralized log analysis

•  Scale up

•  Resilience

DEMO SLIDES

30

THE DISCOVERY SERVER

31

CENTRALIZED LOG ANALYSIS – KIBANA

32

•  Let’s scale up one of the services

SCALE UP

33

$ docker-compose scale rec=2
...
$ docker-compose ps
Name

api_1
rec_1
rec_2
... Products

Product Composite

Product API

Reviews Recommendations

•  The new service instance in the discovery server
SCALE UP

34

•  Get an access token from the OAuth Authentication Server

•  Call the API with the access token

CALL THE API

35

$ curl -s acme:acmesecret@docker:9999/uaa/oauth/token \
 -d grant_type=password -d client_id=acme \
 -d username=user -d password=password | jq .

{"access_token": "e5863174-6a25-4e4d-9fe0-32532a842d88", ...}

$ curl –s 'http://docker:8765/api/product/12345' \
 -H "Authorization: Bearer $TOKEN"| jq .
{
 "productId": 12345, "name": "name", ...
 "recommendations": [{...}, {...}, {...}],
 "reviews": [{...}, {...}, {...}]
}

•  Introduce an error
-  The review service stops to response,

requests just hangs until requests timeout
•  Try out
•  Force the Circuit to open
- Coming requests will fast-fail,

i.e. not wait for the timeout!

CIRCUIT BREAKER

36

Products

Product
Composite

Recommendations Reviews

•  Normal calls (circuit closed):

•  Calls with a few timeouts (circuit still closed):

•  Calls with a lot of timeouts (circuit open, i.e. it will fast-fail):

CIRCUIT BREAKER

37

$ curl 'http://docker:8765/api/product/12345’ ...
 {"productId”: ..., "recommendations": [...], "reviews”:[...]}
0.398 ms

$ curl 'http://docker:8765/api/product/12345’ ...
 {"productId”: ..., "recommendations": [...], "reviews”:null}
3.295 ms

$ curl 'http://docker:8765/api/product/12345’ ...
 {"productId”: ..., "recommendations": [...], "reviews”:null}
0.239 ms

•  The CAP theorem and distributed systems, eventual consistency...
•  Conway’s law requires organizational changes
•  Continuous Delivery, a pre-requisite for large-scale use of microservices
•  Building microservices, try out our blog series (http://goo.gl/6nYXCD)
•  How to apply TDD for microservices?
•  Configuration of microservices
•  When to apply microservices?

•  See blog posts by Sam Newman and Martin Fowler
(http://goo.gl/e6A5Zb, http://goo.gl/ifKBmb)

...WHAT WE DIDN’T HAVE TIME TO TALK ABOUT (THIS TIME)

38

•  When to apply microservices?
•  See blog posts by Sam Newman and Martin Fowler

(http://goo.gl/e6A5Zb, http://goo.gl/ifKBmb)

...WHAT WE DIDN’T HAVE TIME TO TALK ABOUT (THIS TIME)

39

Source: http://goo.gl/ifKBmb

•  Microservices use new solutions to old problems regarding
-  Scalability, resilience, release cycles

•  Microservices is about splitting up monoliths in units of
independently replaceable and upgradeable components

•  Uses infrastructure for scaling out on many small servers
-  In cloud or on premises

•  New advanced, battle-proven and open source tools
for handling challenges with microservices
- Netflix OSS, Spring Cloud and the ELK stack

SUMMARY

40

•  Short term:
-  Cherry pick specific components to address current problems, e.g.

»  the ELK stack for improved log analyses
»  a Circuit Breaker for improved resilience

-  Familiarize yourself with the microservices architecture
•  Mid term:

-  Assess your application portfolio and identify pain points
-  Perform a pilot project with one prioritized application

•  Long term:
-  Establish a strategic plan for microservices
-  Fully implement and deploy microservices for one application

WHAT TO DO NEXT?

41

Q&A

42

?

