MICROSERVICES | PRAKTIKEN

frdn troga monoliter till en arkitektur for kortare ledtider,
hogre skalbarbet och okad feltolerans

MAGNUS LARSSON
2015.05.21 | CALLISTAENTERPRISE.SE

AGENDA

* What’s the problem?

* New solutions to old problems...

What’s a microservice?

New challenges with microservices

Implementing microservices

Demonstration

WHAT'S THE PROBLEM??

* Well known problems

with monolithic applications

— Poor scalability and resilience

— Long release cycles

e ...we hade tried to solve these

problems before (and failed?)...

 But there are new opportunities now!

ArchiMate 2.0 syntax

Node =,

5
Process =) N A

EALRA

Bu3|ngss//
Function

HISTORY OF MICROSERVICES
* Microservices was first heard of in May 2011

* Success stories from early adopters

migrating from monoliths to microservices
— Amazon (http://goo.gl/L{sD67)
- eBay (http://goo.gl/dodV2c)
- Gilt (http://goo.gl/yVVox9)
— Groupon (https://goo.gl/uKTtAs)
- Karma (https://g00.gl/kXObAQO)
— Netflix: Part 1, part 2 and “Fast Delivery”
(https://goo.gl/MVgHMI1, https://goo.gl/fDeZ5A, https://goo.gl/hN6ZCL)
— SoundCloud: Part 1, part 2 and part 3
(https://goo.gl/Xq0Cgm, https://goo.gl/sw]8Vt, https://goo.gl/J20N8I)

NEW SOLUTIONS TO OLD PROBLEMS

* Strong trend moving from “Big Iron” to many small servers
— 'Typically virtual servers
— In cloud or/and on premises
— Better price/performance

ro A

NEW SOLUTIONS TO OLD PROBLEMS
* Cloud computing makes it easier to manage many small servers

— TaaS: Infrastructure as a Service
» Deliver virtual servers

» E.g. Amazon EC2, Microsoft Azure, Google Compute Engine et. al.

— PaaS: Platform as a Service
» Deliver an application platform

» E.g. Heroku, Red Hat OpenShift, Pivotal Cloud Foundry et. Al.
» Note: Some PaaS can be used on premises, e.g. OpenShift and Cloud Foundry

— Docker, the Container revolution...

» IaaS + PaaS = CaaS?
» Windows Server Containers on its way (http://goo.gl/ZmEKTS)!

NEW SOLUTIONS TO OLD PROBLEMS

* How to fit monolithic applications in a number of small boxes?
@)
AN A

AN A \,

NEW SOLUTIONS TO OLD PROBLEMS

* We need to split the monolith to make it fit...

QQQO
ALIA

NEW SOLUTIONS TO OLD PROBLEMS

* Splitting the monolith also makes it easier to scale...

— Auto scaling provided by platforms

QQQO
AN

Al)AL A
AR A°
A A

NEW SOLUTIONS TO OLD PROBLEMS

 Shorter release cycles

— So much easier to update or replace a microservice compared to a monolith

new
version

A ALY
EALSTA

QQQO
N

Y

new
version

QO

QO

QO

WHAT'S A MICROSERVICE?
* A software component that is independently replaceable and upgradeable

* Share nothing architecture
— 'They don’t share databases!

— Only communicate through well defined interfaces,

» E.g. REST services or queuing mechanisms

* Typically deployed as separate runtime processes

WHAT'S A MICROSERVICE?

O

N

N
NRA

=

WHAT'S A MICROSERVICE?

O O O

5 How big is'a microservice?

A) «—Small-enough-to fitin

AN
the head of a developer
ALOEA |

«—Big enough to notjeopardize
« | Performance
« Data consistency

HOW DOES MICROSERVICES FIT INTO AN EXISTING SYSTEM LANDSCAPE?

@ 6 DDDm d ,}_f-.g;.,
A A cig gt 24 INTERNETor " &

= [QDD 0 TH|NGS

5 e

Partner Applications <

() External API Platform)

() Enterprise Service Bus)

QO N © " ©
ANEA AIN Al

14 Monolith A Monolith B Monolith C EACESIIA

HOW DOES MICROSERVICES FIT INTO AN EXISTING SYSTEM LANDSCAPE?

Application C

(based on microservices)

WHAT'S A MICROSERVICE?
e SOA vs. Microservices

— SOA and microservices
don’t conflict, they S o A
complement each other!

— SOA is about how to reuse
existing functionality as services...

Micro-
services

— Microservices is about how to
make functionality to scale

better with high resilience
and short release cycles...

NEW CHALLENGES WITH MICROSERVICES

* Managing large numbers of microservices...

— Where are they and are they okr??

QO QO [éﬂ QO

oyl =0l (%) e

2P 1CH (IO | (AR

NEW CHALLENGES WITH MICROSERVICES

e What went wrong?r??

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

* Minor effect if a small microservice fails than a big monolith...

] VS 0| |1

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

 Beware of chain reactions... 5
— A.k.a “chain of failures” Q N

7 QO,

A}

= |

20

NEW CHALLENGES WITH MICROSERVICES - RESILIENCE

 Beware of chain reactions...
— A.k.a“chain of failures”

o —
Circuit Breaker to the rescue! ‘ - R

xff;)
* Prevents calls when too many e, e

errors are observed

* Directs the call to a fallback method

* Retries the call periodically

21

NEW CHALLENGES WITH MICROSERVICES

* Managing large numbers of microservices requires tools for

1. Runtime discovery of services
» New services can auto-register at startup

2. Dynamic router and load balancer
» Clients can detect new instances as they are started up

3. Centralized log management
» Collects and visualize log events from distributed processes

4. Circuit breaker
» Prevent problems with chain of failures

5. Protecting external APT’s
» Secure external APT’s, e.g. using OAuth 2.0

22

NEW CHALLENGES WITH MICROSERVICES

* Managing 6ge numbers of microservices re ulres tiols for

pen.Source t
» New serygces ca to- reglster at startuiI

2. Dynamic rouigld e s C e
» Clients can detect new instances as they are started up

Q'elastitsearth.

B

1. Runti

NETFLIX

manages

DSS 1 visualize 10g events from dlStl‘lbu

» Secure external APT’s using OAuth 2.0

M Kibana

23

AGENDA - WHERE ARE WE?

* Implementing microservices

* Demonstration

24

IMPLEMENT MICROSERVICES WITH OPEN SOURCE

NETFLIX * Netflix OSS (http://goo.gl/DHOf40)
0OsSss — Since 2011, Netflix has been releasing components of

their cloud platform as free and open source software
— Obviously proven in battle...

é * Spring Cloud (http://goo.gl/vHVdEp)
— Spring Cloud simplifies use of Netflix OSS
SPRING CLOUD — Add own components, e.g. OAuth 2.0 support

— Based on Spring Boot and the “convention over configuration” paradigm

®osticart. o The ELK stack (https://goo.gl/aCHIhN)

logstash

— Elasticsearch, Logstash and Kibana

®& Kibana — Used for centralized log analyses

25

DEMO SYSTEM LANDSCAPE

26

* An API for product-information

* A composite service aggregate
information from three core-
SErvices

e Plus infrastructure services for
OAuth, Discovery and Edge-

SErvers...

Curl

Product API

Product Composite

<

~:

= S

QO

Products

Reviews

Recommendations

' DEMO SYSTEM LANDSCAPE

Edge server
(Netflix Zuul)

OAuth token relay

CB/LB

OAuth
Authorization
Server
(spring-security)

Service
Discovery
(Netflix Eureka)

21

E Monitor

Product API OAuth Res Dashboard
(Netflix Turbine +

Hystrix Dashboard)

Logging
Analyses

Product Composite

QO

(ELK stack)

ﬂO

Products Reviews Recommendations

Legend

CB = Circuit Breaker (Netflix Hystrix)
LB = Load Balancer (Netflix Ribbon)

DEPLOY
— Sample configuration file
* In cloud .
— Using PaaS: Pivotal Web Services memory: S12M
instances: 1
$ cf push (https://g00.gl/130DGt) | applications:
- name: product-api-service
path: product-api.jar
* On premises — Sample configuration file
— Using Docker

discovery:
image: callista/discovery-server

$ docker-compose start

pro:
image: callista/product-service
links:
- discovery

28

DEPLOY
— Sample configuration file

memory: 512M
instances: 1
applications:
- name: product-api-service

Java-jar files and — path: product-api.jar

Docker images are
created.by build scripts

— Sample configuration file

discovery:
image: callista/discovery-server

pro:
image: callista/product-service
links:
- discovery

29

DEMO SLIDES

Discovery server

Centralized log analysis

Scale up

Resilience

30

THE DISCOVERY SERVER

Instances currently registered with Eureka

Application AMIs Availability Zones Status

EDGESERVER n/a(l) (1) UP (1) - 172.17.0.70:edgeserver:b74a3b6279298de049546f78f8cde438
PRODUCT n/a(l) (1) UP (1) - 172.17.0.64:product:81409c2245b0135600a481972c9bfef8
PRODUCTAPI n/a(l) (1) UP (1) - 172.17.0.68:productapi:9bb492a65a85c9e2d76e18adec3d5c09
PRODUCTCOMPOSITE n/a(1) (1) UP (1) - 172.17.0.66:productcomposite:afb55f6fb35cd6alfac33c6e0elf6cd5
RECOMMENDATION n/a(l) (1) UP (1) - 172.17.0.60:recommendation:56bal37a59ceeb7118f4431b90f76d1a
REVIEW n/a(l) (1) UP(1)-172.17.0.62:review:3db2f7d0117f6041e87359b6c25b29e6

3 CALLISTA

CENTRALIZED LOG ANALYSIS - KIBANA

@timestamp A »

2015-05-09T08:53:46.141+02:00
2015-05-09T08:53:46.142+02:00
2015-05-09T08:53:46.154+02:00
2015-05-09T08:53:46.163+02:00
2015-05-09T08:53:46.170+02:00
2015-05-09T08:53:46.171+02:00
2015-05-09T08:53:46.177+02:00
2015-05-09T08:53:46.326+02:00
2015-05-09T08:53:46.340+02:00
2015-05-09T08:53:46.341+02:00
2015-05-09T08:53:46.348+02:00
2015-05-09T08:53:46.460+02:00

2015-05-09T08:53:46.473+02:00

{ corrid »

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

5a1e7038-938e-44dc-bad1-18433c7fae3d

{ _type !
product-api
product-api
product-composite
product
product-composite
product-composite
recommendation
recommendation
product-composite
product-composite
review

review

product-api

1 message

execute command: getProductComposite
ProductApi: User=user, Auth=Bearer e272fb85-6l
execute command: getProduct

/product called

execute command: getRecommendations
GetRecommendations...

/recommendation called, processing time: 147
/recommendation response size: 3

execute command: getReviews

GetReviews...

/reviews called, processing time: 109

/reviews response size: 3

GetProductComposite http-status: 200

SCALE UP

* Let’s scale up one of the services

Name

S docker-compose ps

S docker-compose scale rec=2

@timestamp A »

2015-05-09T08:53:42.539+02:00
2015-05-09T08:53:42.717+02:00
2015-05-09T08:53:44.915+02:00

2015-05-09T08:53:45.040+02:00

« HOSTNAME »

8c0edf567efd

8c0edf567efd

beeab8b76d07

beeab8b76d07

4 _type Y
recommendation
recommendation
recommendation

recommendation

4 corrld »

623010bf-677d-4ea0-ae3c-0683550240e4

623010bf-677d-4ea0-ae3¢c-0683550240e4

09b176af-4093-48f4-973e-a6f0f8489726

09b176af-4093-48f4-97 3e-a6f0f8489726

QO

Recommendations

4 message

/recommendation called, processing time: 175

/recommendation response size: 3

/recommendation called, processing time: 122

/recommendation response size: 3

SCALE UP

e The new service instance in the discovery server

Instances currently registered with Eureka

Availability

Application AMIs Zones

Status

n/a

EDGESERVER (1) (1) UP (1) - 172.17.0.23:edgeserver:bf311b440f4e4f66c87815173ec6787d
PRODUCT :11/)3 (1) UP(1)-172.17.0.17:product:572cd15b44calcfdcOca2b23b885998f
PRODUCTAPI :‘ll)a (1) UP (1) - 172.17.0.21:productapi:6d9e4ec6da84fdb41701efd737e4fe51
PRODUCTCOMPOSITE n/a (1) UP (1) - 172.17.0.19:productcomposite:10bca9e845a5871cf6372fbea71105b0

(1)

RECOMMENDATION

UP (2) - 172.17.0.13:recommendation:dd364a10b6e735e834821137ea8ffe62
172.17.0.11:recommendation:cae6elce5527cafablbb854f2c93eac8

n/a
REVIEW (1) (1)

34

UP(1)-172.17.0.15:review:46fec4812d0971b45adaeeOeOaef635¢

CALL THE API

e Get an access token from the OAuth Authentication Server

$ curl -s acme:acmesecret@docker:9999/uaa/ocauth/token \
—-d grant type=password -d client id=acme \
-d username=user -d password=password | Jjgq .

{"access token": "eb863174-6a25-4e4d-9fe0-32532a842d88",

e Call the API with the access token

$ curl -s 'http://docker:8765/api/product/12345" \
-H "Authorization: Bearer S$TOKEN"| jqg .
{
"productId": 12345, "name": "name",
"recommendations": [{...}, {...}, {...} 1,
"reviews": [{...}, {...}, {...}]

35

CIRCUIT BREAKER

e Introduce an error

— 'The review service stops to response,

* Force the Circuit to open
— Coming requests will fast-fail,

36

requests just hangs until requests timeout

* Try out

i.e. not wait for the timeout!

Hosts
Median
Mean

1
170ms
148ms

getReviews

1
0|0
0

Hos

0.0 %

t 0.1/s

Cluster: 0.1/s
Circuit Closed

90th
99th
99.5th

170ms
170ms
170ms

—

Hosts
Median
Mean

0
0|0
1

1
Oms
Oms

Product
Composite

QO

e

— ;
O A
Products Reviews Recommendations
getReviews getReviews
100.0 % 100.0 %
20
Host: 0.1/s Host: 2.0/s
Cluster: 0.1/s ‘ Cluster: 2.0/s
Circuit Closed Circuit Open
90th Oms Hosts 1 90th Oms
5 gg,gm gm: Median Oms 9%th Oms
Mean Oms 99.5th Oms

CIRCUIT BREAKER

* Normal calls (circuit Ik
$ curl 'http://docker:8765/api/product/12345’
{"productId”: ..., "recommendations": [...], "reviews”:
e Calls with a few timeouts (circuit still I
$ curl 'http://docker:8765/api/product/12345’
{"productId”: ..., "recommendations": [...], "reviews”:null}
3.295 ms

* Calls with a lot of timeouts (circuit open, i.e. it will

$ curl 'http://docker:8765/api/product/12345
{"productId”: ..., "recommendations": [...], "reviews”:null}

37

...WHAT WE DIDN'T HAVE TIME TO TALK ABOUT (THIS TIME)

* The CAP theorem and distributed systems, eventual consistency...

* Conway’s law requires organizational changes

Continuous Delivery, a pre-requisite for large-scale use of microservices

Building microservices, try out our blog series (http://goo0.gl/6nYXCD)

How to apply TDD for microservices?

Configuration of microservices

When to apply microservices?

* See blog posts by Sam Newman and Martin Fowler
(http://goo.gl/e6AS5Zb, http://goo.gl/ifKBmb)

38

...WHAT WE DIDN'T HAVE TIME TO TALK ABOUT (THIS TIME)

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

/

/ as complexity kicks in,
/ productivity starts falling S
/ rapidly) @ e Kent Beck ¥ Follow
/ / the decreased coupling of BN @KentBeck —
/ / microservices reduces the . X) . .
7" _ g // attenuation of productivity any decent answer to an interesting question begins, "it
v / depends..."
/ 7:45 PM - 6 May 2015
Productivity A
Microservice - 43 380 % 240
\ &

Base Complexity

Source: http://goo.gl/ifKkBmb but remember the skill of the team will
X : A outweigh any monolith/microservice choice

* When to apply microservices?
* See blog posts by Sam Newman and Martin Fowler

(http://goo.gl/e6A5Zb, http://goo.gl/ifKBmb)

39 CALLISTA

SUMMARY

* Microservices use new solutions to old problems regarding

— Scalability, resilience, release cycles

* Microservices is about splitting up monoliths in units of

independently replaceable and upgradeable components

* Uses infrastructure for scaling out on many small servers

— In cloud or on premises

* New advanced, battle-proven and open source tools

for handling challenges with microservices
— Netflix OSS, Spring Cloud and the ELK stack

40

WHAT TO DO NEXT?

* Short term:
— Cherry pick specific components to address current problems, e.g.
» the ELK stack for improved log analyses
» a Circuit Breaker for improved resilience
— Familiarize yourself with the microservices architecture

e Mid term:

— Assess your application portfolio and identify pain points
— Perform a pilot project with one prioritized application

* Long term:
— Establish a strategic plan for microservices
— Fully implement and deploy microservices for one application

4

Q&A

42

CALLISTA

